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Summary
This article presents a continuous dynamical system model learning method-
ology that can be used to generate reference trajectories for the autonomous
systems to follow, such that these trajectories are invariant to a given closed
set and uniformly ultimately bounded with respect to an equilibrium point
inside the closed set. The autonomous system dynamics are approximated using
extreme learning machines (ELM), the parameters of which are learned sub-
ject to the safety constraints expressed using a reciprocal barrier function, and
the stability constraints derived using a Lyapunov analysis in the presence of
the ELM reconstruction error. This formulation leads to solving a constrained
quadratic program (QP) that includes a finite number of decision variables with
an infinite number of constraints. Theorems are developed to relax the QP with
infinite number of constraints to a QP with a finite number of constraints which
can be practically implemented using a QP solver. In addition, an active sam-
pling methodology is developed that further reduced the number of required
constraints for the QP by only evaluating the constraints at a smaller subset of
points. The proposed method is validated using a motion reproduction task on a
seven degree-of-freedom Baxter robot, where the task space position and velocity
dynamics are learned using the presented methodology.
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1 INTRODUCTION

Learning desired system dynamics from recorded motion trajectory data is one of the methods used to produce desired
motion paths that autonomous systems can follow in many manufacturing and space robotics applications to simplify
robot programming.1 Gaussian mixture models (GMM),2 Gaussian process regression,3 artificial neural networks,4 and
extreme learning machines (ELM)5 are a few among many function approximation methods that can be used to encode the
trajectory data in the form of a differential equation model to represent the system dynamics. Unlike classical system iden-
tification approaches6,7 data-driven approaches create black box models that do not require much prior knowledge about
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the system.8 While accurate encoding of the motion plans for autonomous systems is fundamental to robotics and control
systems applications, preserving natural properties observed in these motion plans such as convergence to a goal location,
avoiding prohibited areas, obstacle, or staying within given bounds (invariance), robustness to faults in the data-driven
model is essential. The stability and robustness properties provide resiliency property to the learned system model.

Classical system identification literature has developed methods that learn the stable closed-loop transfer function
models.9 A concurrent learning is an adaptive update scheme, where the model parameters are identified correctly with-
out persistency of excitation condition, is developed in Reference 10. In imitation learning literature, one of the commonly
used dynamical system (DS)-based frameworks is called as a dynamic movement primitives.11-13 In Reference 14, a non-
linear state space system is learned using a stable estimator of dynamical systems algorithm that preserves the property
of a global convergence to an equilibrium point. The problem is formulated as a parameter learning problem of GMM
subject to stability constraints derived from Lyapunov analysis. In Reference 15, a method called control Lyapunov func-
tion (LF)-based dynamic movements is introduced to stabilize the system. As it is mentioned in Reference 16, although
the method can learn complex dynamics, it requires an online correction signal and does not provide mathematical guar-
antees. In Reference 17, a method called contracting dynamical system primitives (CDSP) that learns the parameters of
GMM subject to partial contraction analysis is presented. The method uses a sum-of-squares based decomposition to
eliminate the state dependence from the constraints, which overcomes the problem of infinite constraints. Nonlinear DS
models that are learned using the CDSP method are shown to be capable of recreating complex trajectories and are robust
to sudden target change and spatial perturbations. An algorithm to encode motion dynamics using ELM, called neurally
imprinted vector fields, is presented in Reference 18. Stability of the learned system is verified using constraints derived
through Lyapunov analysis. However, these methods do not consider safety property in the model learning problem. In
this article, the model learning problem is formulated subject to the safety constraints encoded using reciprocal barrier
functions (BFs) in addition to the stability constraints encoded using LFs.

In addition to the stability property of DSs, providing safety guarantees on the learned model is another critical
property to be considered in many autonomous robotic systems such as robot manipulators, autonomous vehicles, and
so forth.19,20 In Reference 20, an active learning method is developed to learn the safe region of attraction set given the
system dynamics represented using a Gaussian process (GP). In Reference 21, a supervised machine learning approach
is used to estimate the control BFs from sensor data. In References 22,23, a reinforcement learning method that guar-
antees stability and safely explores the state space to collect new data for learning is presented. Barrier certificates is
a commonly used approach to study forward invariance of the DS model in a given closed set, which can be used
to examine the safety of the dynamic system model. Barrier certificates define a forward invariant safe region such
that the solutions of the DS that start in that region remain in that region for all time.24,25 In References 19,26-29,
barrier certificates are successfully used for DSs where ensuring safety conditions is critical. In References 23,30 BF
transform is used to constrain the state space in order to develop a controller using reinforcement learning. In Ref-
erence 31, algorithms for learning uncertainty represented as a GP in a nonlinear DS, as well as for maximal safe
set estimation using BFs, are derived. In Reference 32, a cooperative control law is developed which is based on con-
trol barrier function for human–robotic network teaming. However, these methods focus on achieving safety property
using a control design. By contrast, a model learning problem is solved in this article such that the learned model
preserves stability and safety properties observed in the data. In Figure 1 trajectories that are generated using three
different parameterization techniques, namely, GMM, ELM, and single layer feedforward network without any con-
straints are shown. As shown in Figure 1, models that are learned without constraints will result in trajectories leaving
a prescribed set. The set can be regarded as a safe region for the robot to operate, for example, avoiding obstacles or
in achieving safety in human–robot collaboration where the human is modeled as a moving obstacle. In Figure 2 a
sequence of images is shown where the motion trajectories generated for the Baxter robot fail to remain inside the
prescribed set.

The main contribution of this article is to design a model learning methodology for a continuous nonlinear DS model,
which preserves the forward invariance property in a prescribed set and ensures the motion trajectories are uniformly
ultimately bounded (UUB) with respect to an equilibrium point inside the invariant region. Due to the constraints devel-
oped using BF and Lyapunov analyses, the proposed method accurately reproduces the demonstrations from any initial
conditions that start inside the invariant set. Moreover, it guarantees that the learned trajectories remain inside a closed
set and converge to a bound. An ELM is used to approximate the unknown continuous nonlinear function of the DS.
The learning problem is formulated as a parameter learning problem of ELM subject to the BF constraints along with
the stability constraints derived using Lyapunov analysis in the presence of the function reconstruction error of the ELM.
Moreover, the parameter learning problem is posed as an optimization problem where the safety and stability constraints
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896 SALEHI et al.

F I G U R E 1 Results of model using Gaussian mixture model ((A) and (B)), extreme learning machines (C) and (D)), single layer
feedforward network ((E) and (F)) without constraints. Ellipse and circle are used as invariant sets. (shown in dark red). The streamlines of
the models learned without barrier function constraints (in gray) are shown along with the demonstrated data (in solid red lines) and the
reproductions (in dashed blue lines) [Colour figure can be viewed at wileyonlinelibrary.com]

are enforced at all the points in the invariant set, which leads to a semiinfinite program, that is, optimization with a finite
number of decision variables and an infinite number of constraints.33 In this article, the challenge of an infinite number of
constraints is overcome by drawing random samples from uniformly distributed points inside the invariant set of interest,
and only a finite number of constraints are used in the optimization problem for ELM parameter learning. By exploiting
the locally Lipschitz continuous assumption of the BF, Theorem 1 is developed, which states that enforcing a modified
reciprocal barrier constraint at a finite number of points inside the invariant set is sufficient to ensure forward invariance
of the entire set with respect to the trajectories of the nonlinear system. Similarly, it is proven in Theorem 2 that only a
finite number of sample points from the inside of the invariant set suffices to ensure the trajectories of the nonlinear sys-
tem are UUB. Furthermore, an active sampling strategy is used to select points that are most informative for enforcing the
reciprocal barrier and Lyapunov constraints. The sampling strategy substantially reduces the number of points used for
training the nonlinear DS model. Thus, scaling of the learning process to a higher state dimensions is possible. The Lya-
punov condition provides exponential stability of the learned system model without the function reconstruction errors.
It is shown that with the ELM function reconstruction error and external disturbances added to the system, the system
trajectories remain within a ball of known radius with respect to the goal point. Thus, the learned system model is robust
with respect to the external disturbances. Due to the ELM approximation of the system model, the optimization problem
for NN training is convex. The reciprocal barrier constraints with ELM parameter learning can be reformulated as lin-
ear constraints. For tuning the input layer weights, slopes and biases of the ELM are obtained using the batch intrinsic
plasticity (BIP) algorithm.34
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SALEHI et al. 897

F I G U R E 2 Sequence of images show that the robot end effector goes outside the ellipse when the model is trained without the barrier
constraints [Colour figure can be viewed at wileyonlinelibrary.com]

Compared with our prior work published in Reference 35, this article presents a detailed literature review of the
state-of-the-art. It develops a quadratic programming (QP) scheme based on BF and LF to achieve a safe and stable
identification of the motion dynamics in the presence of the function reconstruction error of the ELM. Lemma 2 is
added to prove that the derived barrier constraint is implementable, and it is robust to the parameter uncertainty asso-
ciated with the ELM model. In addition, Lemma 4 is added, which is related to the robustness analysis of the learned
model to external disturbances. Moreover, an active sampling method is proposed that selects the most informative
points for enforcing both safety and stability constraints. The proposed method is evaluated through numerical sim-
ulations on multiple motion trajectories of various shapes from a publicly available dataset. The performance of the
method is demonstrated on a Baxter robot, and the method’s ability to learn and reproduce motions from real-world data
is illustrated.

The rest of the article is organized as follows. In Section 2, a brief introduction to the BF and ELM is provided. The
problem formalism and the proposed method are described in Section 3. In Section 4, a set of experiments illustrate the
learning method’s ability to learn the DS under barrier and Lyapunov constraints. Finally, in Section 5, discussion of
results and conclusions of the work are given along with possible future works.

2 PRELIMINARIES

In this section, preliminaries of BFs, ELM with BIP learning are presented. ELM is used to approximate the nonlinear
function of the DS.

2.1 Barrier function

Consider a continuous nonlinear DS of the form

ẋ(t) = f (x(t)), (1)

where f ∶ Rn → Rn is a continuous nonlinear function and x(t) ∈  ⊆ Rn is the state of the system. A set  ∈
Rn is called (forward) invariant with respect to (1) if for any initial condition x(0) ∶= x(t0) ∈  implies that x(t) ∈
 , ∀t ∈ R.36 Note that throughout this article, for ease of notation, we abbreviate x(t) by x, unless necessary for
clarity.

Assumption 1. The function f ∶ Rn → Rn is locally Lipschitz continuous with Lipschitz constant Lf and bounded in 

with ||f (⋅)|| ≤ f , where f is a positive scalar.

BFs define a forward invariant safe region, where the solutions of a DS in this region remain in the region
for all time.19,37
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898 SALEHI et al.

2.1.1 Constructing the BF

Given a closed set  ⊂ Rn, its interior and its boundary are defined as follows

 = {x ∈ R
n ∶ h(x) ≥ 0}, (2)

𝜕 = {x ∈ R
n ∶ h(x) = 0}, (3)

Int() = {x ∈ R
n ∶ h(x) > 0}, (4)

where h ∶ Rn → R is a continuously differentiable function.

Definition 1 (19, definition 1). Given the continuous system (1), the closed set  defined by (2)–(4), and continu-
ously differentiable function h ∶ Rn → R, a real-valued function B ∶ Int() → R that is differentiable with respect to its
argument is said to be a reciprocal BF, if there exist class  functions 𝜂1, 𝜂2, 𝜂3 such that for all x ∈ Int()

1
𝜂1(h(x))

≤ B(x) ≤ 1
𝜂2(h(x))

(5)

𝜕B(x)
𝜕x

f (x) ≤ 𝜂3(h(x)). (6)

Candidate reciprocal BFs are inverse-type and logarithmic-type BFs given by B(x) = 1
h(x)

and B(x) = − log h(x)
1+h(x)

,
respectively.19 Note that the candidate is unbounded on the set boundary, that is, B(x)→∞ as x → 𝜕 . In this article, an
inverse-type reciprocal BF is used.

Assumption 2. The real-valued function B(x) is locally Lipschitz continuous with Lipschitz constant LB such that ‖‖‖ 𝜕B
𝜕x
‖‖‖ ≤

LB; 𝜕B
𝜕x

is locally Lipschitz continuous with Lipschitz constant L𝜕B.

Conventionally safety verification in the form of trajectory invariance with respect to a given closed set relies on the
existence of a BF satisfying conditions on both the function itself and its time derivative along solution trajectories of the
DS, namely, Ḃ(x) ≤ 0.24 However, as it is mentioned in Reference 38, the existence of a BF is just a sufficient condition to
guarantee the safety property to be verified. In other words, the invariance verification of all sublevels of the closed set 
may not be required. Therefore, authors in Reference 19 relaxed the condition to Ḃ ≤

𝛾

B
for Reciprocal BFs, where 𝛾 is a

positive constant. The modification enables only a single sublevel set to be invariant.

2.2 The ELM and BIP

ELM is a learning algorithm that uses least squares approach to estimate the parameters of the single layer neural network
(SLNN). According to the ELM theory,39 input weights and all the hidden node parameters are randomly assigned. ELM
theory claims, unlike the conventional learning methods, that parameter (i.e., input weights, slopes, and biases) tuning
is not required in the learning. The choice of ELM over traditional gradient-based methods for SLNN is primarily based
on faster learning speed of ELM. This choice also avoids potential issues with the gradient-based methods, such as local
minima and improper learning rate.39 Consider the following multilayer perceptron with nh hidden nodes

y =
nh∑
i

Gi(x,Ui, ai, bi) ⋅ W T
i , (7)

where y ∈ Rn, Gi(⋅) is a scalar, which denotes the ith hidden node activation function whose range depends on the choice
of the nonlinear function, Ui ∈ Rn is the input weight vector connecting the input layer to the ith hidden neuron, ai, bi ∈ R

are slope and bias corresponding to the ith hidden neuron, and W T
i ∈ Rn is the output weight vector connecting the

output layer to the ith hidden neuron. The ELM is created by randomly initializing the input weight matrix U ∈ Rn×nh , the
slopes (usually are set to one) a ∈ Rnh , and the biases b ∈ Rnh . The sigmoid function is typically chosen for the activation
function. Although the ELM algorithm is fast, random initialization may lead to having saturated or constant neurons,
which are not desired while learning the model.34 To circumvent this problem, an intrinsic plasticity (IP) learning rule
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SALEHI et al. 899

can be used.40 IP is an online learning method that optimizes the information transmission of a single neuron by adapting
the slopes and biases such that the output of the activation function becomes exponentially distributed. In our article, a
computationally efficient batch version of the IP method, called BIP (cf. Reference 34) is used.

3 PROBLEM FORMULATION AND SOLUTION APPROACH

3.1 Constrained ELM learning problem

Consider demonstrations of a motion governed by the first-order differential equation (1), and let a set of N demonstra-
tions be solutions to the DS. The nth demonstration consists of trajectories of both the states {x(t)}t=Tn

t=0 and its derivatives
{ẋ(t)}t=Tn

t=0 . Assuming that the nonlinear function f (⋅) in (1) is deterministic, the system in (1) can be approximated by
ELM given by

ẋ(t) = f (x(t)) = W T𝜎(q ⋅ s(t)) + 𝜖(x(t)), (8)

where W ∈ Rnh×n is the bounded constant output layer weight matrix, 𝜎(⋅) ∈ Rnh is the vector sigmoid activation function,
nh is the number of neurons in the hidden layer of the ELM, and 𝜖(x) ∈ Rn is the function reconstruction error. The
vector sigmoid activation function is given by 𝜎(q ⋅ s(t)) = [ 1

1+exp(−(q⋅s(t))1)
, … ,

1
1+exp(−(q⋅s(t))i)

, … ,
1

1+exp(−(q⋅s(t))nh
)
]T , where

(q ⋅ s(t))i is the ith element of the vector (q ⋅ s(t)), q = [P, bp] ∈ Rnh×n+1, P = diag(ap) ⋅ UT ∈ Rnh×n, ap ∈ Rnh and bp ∈ Rnh

are the internal slopes and biases vectors, respectively, U ∈ Rn×nh is the bounded input layer weight matrix, and s(t) =
[x(t)T , 1]T ∈ Rn+1 is the input vector to the ELM.

Remark 1. The nonlinear function f (x) is within real and positive constant 𝜖 of the ELM range if there exist a finite number
of hidden neurons nh and constant weights so that for all x(t) ∈  the approximation in (8) holds with ||𝜖(x)|| ≤ 𝜖. The
boundedness of the reconstruction error 𝜖(x) follows from the Universal Approximation Property of SLNN41 and the fact
that for any randomly generated activation function the reconstruction error goes to zero,42,43 that is, lim

nh→∞
𝜖(x) = 0.

Assumption 3. The ideal weights of the ELM are bounded by known positive constants, that is, ||W ||F ≤ W , ||U||F ≤ Ū,
where || ⋅ ||F is the Frobenius norm.44 In addition, it is assumed that ||𝜖′(x)|| ≤ 𝜖

′, where prime denotes the derivation with
respect to x.

Remark 2. The sigmoid function 𝜎i(⋅) ∈ [0, 1] and hence its derivative 𝜎i(⋅)(1 − 𝜎i(⋅)) has upper and lower bounds given
by 0 ≤ 𝜎i(⋅)(1 − 𝜎i(⋅)) ≤ 0.25, ∀i= 1, … nh. Thus, ||𝜎(⋅)|| ≤ √

nh and ||𝜎(⋅)(1 − 𝜎(⋅))|| ≤ 0.25
√

nh. Given that the input and
output weight matrices are assumed to be bounded, Assumption 1 is still valid for the ELM parameterization of f (x).45

Given the trajectory data, this article addresses the problem of learning the nonlinear dynamic model f (⋅) in (8), which
is approximated using ELM, such that the set bounded by the state predefined limits remains forward invariant and the
trajectories are stable with respect to a specified equilibrium point inside the invariant region.

3.2 Constrained learning methods for nonlinear ELM dynamics

In this subsection, the BF formulation is presented, which is used in the parameter learning algorithm of the ELM subject
to the barrier constraints. The method is then extended to parameter learning of ELM subject to Lyapunov stability con-
straints followed by a method that learns the nonlinear model, which has both stability and safety constraints encoded
using barrier and LFs formulation.

3.2.1 Encoding safety constraints

To establish the safety of the learned model BFs are used to certify invariance of the DS defined in (8) with respect to a
given closed set.
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900 SALEHI et al.

Reciprocal BF formulation
As mentioned in Subsection 2.1, BF defines a forward invariant region such that solutions of the DS that start in that
region remain in that region for all time. Now, depending on the applications one could choose any arbitrary shape of the
invariant regions, for which the BF can be designed, as long as it satisfies the conditions defined in (2)–(4). Without loss
of generality, ellipse and circle are the two shapes chosen in this article to define the invariant regions. Such shapes are a
commonly used approximation for representing obstacles, or the region of operation where the robot is allowed to move.
To construct an inverse-type reciprocal BF, consider the convex connected set 0 ⊂ R2, which is defined according to (2)
in Section 2.1.1. The function h(x), where x = [x1, x2]T ∈ 0 is selected as follows

h(x) = 1 −
((x1 − x1g) cos 𝛼 + (x2 − x2g) sin 𝛼)2

a2
1

−
((x1 − x1g) sin 𝛼 + ((x2 − x2g) cos 𝛼)2

a2
2

, (9)

where x1g and x2g are the coordinates of the center of gravity of the ellipse, a1 and a2 are the major and minor axes of the
ellipse, respectively, and 𝛼 is the orientation of ellipse.

Remark 3. On defining the invariant region, the continuously differentiable function h(x) in (9) can also be constructed
for the higher dimensions.

Learning dynamics using ELM with BF constraints
Given the ELM parametrization and BF constraints, the ELM parameter learning problem with BF constraints is now
discussed. The constrained optimization problem to be solved in order to train the ELM is given by

W∗ = arg min
W

Tn∑
t=0

[ẋ(t) − ̂̇x(t)]T[ẋ(t) − ̂̇x(t)] + 𝜇W (tr(W TW)) (10)

s.t. Ḃ(x) ≤ 𝛾

B(x)
, ∀x ∈ 0, (11)

where ẋ(t) ∈ Rn and ̂̇x(t) ∈ Rn represent the target and the ELM’s output, 𝜇W ∈ R+ is the parameter of the regularization,
B(x) ∈ R is a BF, and 𝛾 ∈ R+ is a positive constant. For the reciprocal BF B(x) = 1

h(x)
, the constraint in (11) can be rewritten

as follows:

 =
{

x ∈ 0 ∶ 𝜕B
𝜕x

f (x) − 𝛾

B(x)
≤ 0

}
. (12)

Enforcing the constraint (12) in the optimization problem (10) and (11) for learning the DS is a difficult task because the
constraint (12) has to be satisfied ∀x ∈ 0, which is an uncountably infinite set. To mitigate this problem, the Lipschitz
continuity of B−1 is proven in Lemma 1.

Lemma 1. The functions B−1(x) is Lipschitz continuous with Lipschitz constant LB−1 .

Proof. To prove B−1(x) is Lipschitz continuous, we know that h(x) is a continuously differentiable function, and therefore
the following function ||B−1(x) − B−1(x′)|| can be rewritten as ||h(x) − h(x′)|| ≤ Lh||x − x′|| with ‖‖‖ 𝜕h(x)

𝜕x
‖‖‖ ≤ Lh=B−1 , ∀x, x′ ∈

0 ⊂ Rn, proving the result. ▪

Given that B−1(x) is Lipschitz continuous in x with Lipschitz constants LB−1 , next it is proven in Theorem 1 that the
constraint in (12) needs to be evaluated at only finite number of sampled points in0. It is proven that enforcing a modified
barrier constraint for a finite number of sampled points is sufficient for providing solution to the optimization problem
in (10) and (11). Let 𝜏 ⊂ 0 be a discretization of the state space 0 with the closest point in 𝜏 to x ∈ 0 denoted by [x]𝜏
such that ||x − [x]𝜏 || ≤ 𝜏

2
, and 𝜏 is the discretization resolution.

Remark 4. The discretized state space 𝜏 can be obtained by a simple grid discretization, that is, for example to use uni-
form sampling strategy. Other examples for probability sampling are including but not limited to simple random sampling,
systematic sampling, stratified sampling, and so forth.46,47
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SALEHI et al. 901

Theorem 1. If the following condition holds[
𝜕B
𝜕x

f (x)
]
𝜏
− 𝛾B−1([x]𝜏) ≤ −

(
Ḃ + 𝛾LB−1

𝜏

2

)
, ∀[x]𝜏 ∈ 𝜏 , (13)

where Ḃ ≜ (L𝜕B(W
√

nh + 𝜖) + LBLf ) 𝜏2 , then the safety barrier constraint in (12) is satisfied ∀x ∈ 0.

Proof. Using Ḃ(x) = 𝜕B(x)
𝜕x

f (x), (13) can be rewritten as Ḃ([x]𝜏) − 𝛾B−1([x]𝜏) ≤ −
(
Ḃ + 𝛾LB−1

𝜏

2

)
, ∀[x]𝜏 ∈ 𝜏 , which implies

Ḃ([x]𝜏) + Ḃ − 𝛾B−1([x]𝜏) + 𝛾LB−1
𝜏

2
≤ 0, ∀[x]𝜏 ∈ 𝜏 . (14)

If Ḃ(x) − 𝛾B−1(x) is a lower bound on Ḃ([x]𝜏) + Ḃ − 𝛾B−1([x]𝜏) + 𝛾LB−1
𝜏

2
, then the barrier constraint in (12) will be

satisfied. Consider

 = Ḃ(x) − Ḃ([x]𝜏) − 𝛾(B−1(x) − B−1([x]𝜏)), (15)

which by using the triangle inequality,  in (15) can be upper bounded as

 ≤ |(Ḃ(x) − Ḃ([x]𝜏))| + 𝛾|(B−1(x) − B−1([x]𝜏))|. (16)

Adding and subtracting 𝜕B([x]𝜏 )
𝜕x

f (x) to the first term on the right-hand side of (16), that is, |Ḃ(x) − Ḃ([x]𝜏)| and using
Assumptions 1–3 we have

|(Ḃ(x) − Ḃ([x]𝜏))| = |||||
(
𝜕B(x)
𝜕x

− 𝜕B([x]𝜏)
𝜕x

)
f (x) + 𝜕B([x]𝜏 )

𝜕x
(f (x) − f ([x]𝜏))

|||||
≤
‖‖‖‖‖
(
𝜕B(x)
𝜕x

− 𝜕B([x]𝜏 )
𝜕x

)‖‖‖‖‖ ||W T𝜎(q ⋅ s(t)) + 𝜖(x)|| + ‖‖‖‖𝜕B([x]𝜏)
𝜕x

‖‖‖‖ || (f (x) − f ([x]𝜏 )) ||
≤ (L𝜕B(W

√
nh + 𝜖) + LBLf )||x − [x]𝜏 ||

≤ (L𝜕B(W
√

nh + 𝜖) + LBLf )
𝜏

2
= Ḃ. (17)

Furthermore, by using Lipschitz continuity of B−1, ∀x ∈ 0, and thereby mean value theorem, (16) can be rewritten as
follows

Ḃ(x) − Ḃ([x]𝜏) − 𝛾(B−1(x) − B−1([x]𝜏)) ≤ |(Ḃ(x) − Ḃ([x]𝜏))| + 𝛾|(B−1(x) − B−1([x]𝜏))|
≤ Ḃ + 𝛾

(‖‖‖‖𝜕B−1(𝜉)
𝜕x

‖‖‖‖ ||(x − [x]𝜏)||) , (18)

where 𝜉 ∈ (x, [x]𝜏) is a point on the line segment connecting x to [x]𝜏 . Using the results of Lemma 1, ‖‖‖ 𝜕B−1(𝜉)
𝜕x

‖‖‖ can be upper
bounded by LB−1 . Hence,

Ḃ(x) − Ḃ([x]𝜏) − 𝛾(B−1(x) − B−1([x]𝜏)) ≤ Ḃ + 𝛾LB−1
𝜏

2
, (19)

which yields

Ḃ(x) − 𝛾B−1(x) ≤ Ḃ([x]𝜏) + Ḃ − 𝛾B−1([x]𝜏) + 𝛾LB−1
𝜏

2
∀x ∈ 0 and ∀[x]𝜏 ∈ 𝜏 . (20)

From (14) and (20), Ḃ(x) − 𝛾B−1(x) ≤ 0, ∀x ∈ 0. ▪

Using the result of Theorem 1, the optimization problem (10) and (11) can be written in its modified form, given by
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902 SALEHI et al.

W∗ = arg min
W

Tn∑
t=0

[ẋ(t) − ̂̇x(t)]T[ẋ(t) − ̂̇x(t)] + 𝜇W (tr(W TW)) (21)

s.t. Ḃ([x]𝜏) − 𝛾B−1([x]𝜏) ≤ −
(
Ḃ + 𝛾LB−1

𝜏

2

)
, ∀[x]𝜏 ∈ 𝜏 . (22)

Substituting (8) in (13), the optimization problem in (21) and (22) can be written in terms of h(x) as follows

W∗ = arg min
W

Tn∑
t=0

[ẋ(t) − ̂̇x(t)]T[ẋ(t) − ̂̇x(t)] + 𝜇W (tr(W TW))

s.t. − Jx([x]𝜏)(W T𝜎(q ⋅ [s]𝜏) + 𝜖([x]𝜏)) − 𝛾h3([x]𝜏) ≤ −h2([x]𝜏)
(
Ḃ + 𝛾LB−1

𝜏

2

)
∀[x]𝜏 ∈ 𝜏 , (23)

where Jx ∈ R1×n is the gradient of h(x). Moreover, the constraint in (23) can be reformulated as a linear constraint in
decision variable 𝜃, given by

−Jx([x]𝜏)(Σ𝜃 + 𝜖([x]𝜏)) − 𝛾h3([x]𝜏) ≤ − h2([x]𝜏)
(
Ḃ + 𝛾LB−1

𝜏

2

)
, ∀[x]𝜏 ∈ 𝜏 , (24)

where 𝜃 = [wT
1 , … ,wT

n ]T ∈ R(n⋅nh) and wi ∈ Rnh , ∀i= 1, … , n are the columns of the output weight matrix W ∈ Rnh×n,
and Σ ∈ Rn×(n⋅nh) is given by

Σ =
⎡⎢⎢⎢⎣

𝜎(⋅)T 01×(n−1)⋅nh

⋱

01×(n−1)⋅nh 𝜎(⋅)T

⎤⎥⎥⎥⎦ . (25)

In practice the reconstruction error is not measurable, and therefore enforcing BF constraint in (24) is not feasi-
ble. The following lemma shows that BF constraint is robust to parameter uncertainty and proves that while (24) is not
implementable the new modified BF constraint in (26) can be employed instead.

Lemma 2. If the following constraint is satisfied for the DS in (8 ),

−Jx([x]𝜏)Σ𝜃 − 𝛾h3([x]𝜏) ≤ −h2([x]𝜏) ∀[x]𝜏 ∈ 𝜏 , (26)

where

 = (L𝜕B(W
√

nh + 𝜖) + LBLf + 𝛾LB−1)𝜏
2
+ LB𝜖 > 0, (27)

then system trajectories are guaranteed to be safe with respect to the invariant region defined byh([x]𝜏), but also robust to
parameter uncertainty, that is, 𝜖([x]𝜏).

Proof. Consider the constraint (24), which guarantees the safety of the DS in (8) in the form of trajectory invariance with
respect to the compact set 0. It can be rewritten as

𝜕B
𝜕x

Σ𝜃 + 𝜕B
𝜕x

𝜖([x]𝜏) − 𝛾h([x]𝜏) ≤ −Ḃ − 𝛾LB−1
𝜏

2
, ∀[x]𝜏 ∈ 𝜏 , (28)

which after substituting (17) in (28), upper bounding 𝜕B
𝜕x
𝜖([x]𝜏) once it is taken to the right-hand side, and simple algebraic

manipulation it yields

𝜕B
𝜕x

Σ𝜃 − 𝛾h([x]𝜏) ≤ −(L𝜕B(W
√

nh + 𝜖) + LBLf + 𝛾LB−1)𝜏
2
− LB𝜖

−Jx([x]𝜏)Σ𝜃 − 𝛾h3([x]𝜏) ≤ −h2([x]𝜏) , ∀[x]𝜏 ∈ 𝜏 , (29)

where  is defined in (27). ▪
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SALEHI et al. 903

3.2.2 Encoding stability constraints

The boundedness solutions of the nonlinear DS defined in (8) can be ensured using Lemma 3.

Lemma 3. The nonlinear system defined in (8) is said to be UUB if

L = {x ∈ 0 ∶ (x − x∗)TΣ𝜃 ≤ −𝛽(x)}, (30)

where 𝛽(x) = 𝜌(x − x∗)T(x − x∗), x* is the equilibrium point, and 𝜌 ∈ R+ is a positive constant. Furthermore, the ultimate
bound is given by

||x − x∗|| ≤ 𝜖

𝜌
, ∀t > t0 + T and T ≥ 0. (31)

Proof. Consider a quadratic Lyapunov candidate function V(x) = 1
2
(x − x∗)T(x − x∗), ∀x ∈ 0. Taking the time derivative

of the LF along the trajectories of (8) yields

V̇(x) = (x − x∗)Tẋ = (x − x∗)T(W T𝜎(q ⋅ s) + 𝜖(x)). (32)

Given W = [w1, … , wn], where wi ∈ Rnh for all i= 1, … , n, and also the fact that wT
i 𝜎(⋅) is a scalar, (32) can be rewritten

as a linear constraint in decision variable 𝜃 = [wT
1 , … ,wT

n ]T ∈ R(n⋅nh) given by

V̇(x) = (x − x∗)T(Σ𝜃 + 𝜖(x)), (33)

where Σ is defined in (25). Using the definition of V̇(x) in (33), the constraint in (30) can be written as

V̇(x) − (x − x∗)T𝜖(x) ≤ −𝜌||x − x∗||2
V̇(x) ≤ −𝜌||x − x∗||2 + (x − x∗)T𝜖(x), (34)

which, after upper bounding the second term on the right-hand side of (34) and completing the squares, can be simplified
further and it is given by

V̇(x) ≤ −𝜌V(x) + 𝜖
2

2𝜌
. (35)

Thus, invoking theorem 4.18 in Reference 36 the ultimate bound is given by ||x − x∗|| ≤ 𝜖

𝜌
, ∀t > t0 +T, which

T ≥ 0. ▪

Similar to Theorem 1, the LF constraint defined in (30) needs to be evaluated at only finite number of sampled points
in 0. To this end, Theorem 2 proves that enforcing a modified Lyapunov constraint for a finite number of sampled points
is sufficient to obtain an optimal solution of the QP defined in (10).

Theorem 2. Given Assumption 3, if the following condition holds

([x]𝜏 − x∗)TΣ𝜃 ≤ −𝛽([x]𝜏) − V
𝜏

2
, ∀[x]𝜏 ∈ 𝜏 , (36)

where V = LV̇ + 2𝜌LV +
√

2V([x]𝜏)𝜖′ + 𝜖, LV is a Lipschitz constant of the selected LF,

LV̇ = W
√

nh + 𝜖 + ||𝜉 − x∗||( āp
√

nhWŪ
4

+ 𝜖
′

)
, (37)

𝜉 ∈ (x, [x]𝜏) is a point on the line segment connecting x to [x]𝜏 , andāp = ||diag(ap)||F, then the Lyapunov constraint in (30)
is satisfied ∀x ∈ 0.
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904 SALEHI et al.

Proof. The constraint in (36) can be rewritten as

V̇([x]𝜏) − ([x]𝜏 − x∗)T𝜖([x]𝜏) + V
𝜏

2
+ 𝛽([x]𝜏) ≤ 0, (38)

for all [x]𝜏 ∈ 𝜏 . If V̇(x) + 𝛽(x) − (x − x∗)T𝜖(x) is an upper bound on (38) then the Lyapunov constraint given in (30) is
satisfied. Using the mean value theorem for V̇(x) yields

V̇(x) − V̇([x]𝜏) =
𝜕V̇(𝜉)
𝜕x

(x − [x]𝜏), (39)

The LHS of Equation (39) can be upper bounded by

V̇(x) − V̇([x]𝜏) ≤
‖‖‖‖‖𝜕V̇(𝜉)

𝜕x

‖‖‖‖‖ ||(x − [x]𝜏)||. (40)

The upper bound on 𝜕V̇(𝜉)
𝜕x

can be derived as follows

𝜕V̇(𝜉)
𝜕x

= 𝜕

𝜕x
(x − x∗)T(W T𝜎(q ⋅ s) + 𝜖(x))‖‖‖‖‖𝜕V̇(𝜉)

𝜕x

‖‖‖‖‖ ≤ ||W T||||𝜎(q ⋅ [𝜉T , 1]T)|| + ||(𝜉 − x∗)T||||W T||||𝜎′(q ⋅ [𝜉T , 1]T)||||diag(ap)||||UT||
+ ||𝜖(x)|| + ||(𝜉 − x∗)T||||𝜖′(x)||

= W
√

nh + 𝜖 + ||𝜉 − x∗||(0.25
√

nhāpWŪ + 𝜖
′) = LV̇ , (41)

where Remarks 1 and 2 are used. Now, consider v = (V̇(x) − V̇([x]𝜏)) + (𝛽(x) − 𝛽([x]𝜏)) + [([x]𝜏 − x∗)T𝜖([x]𝜏) −
(x − x∗)T𝜖(x)], which it can be upper bounded as

v ≤ ||(V̇(x) − V̇([x]𝜏))|| + 2𝜌||(V(x) − V([x]𝜏))|| + ||[([x]𝜏 − x∗)T𝜖([x]𝜏) − (x − x∗)T𝜖(x)]||. (42)

Adding and subtracting [x]T
𝜏 𝜖(x) to the third term on the RHS of (42), using Assumption 3 and the triangle and

Cauchy-Schwartz inequalities we have

v ≤ (LV̇ + 2𝜌LV +
√

2V([x]𝜏)𝜖′ + 𝜖)𝜏
2
= V

𝜏

2
. (43)

Hence V̇(x) + 𝛽(x) − (x − x∗)T𝜖(x) ≤ V̇([x]𝜏) + 𝛽([x]𝜏) − ([x]𝜏 − x∗)T𝜖([x]𝜏) + V
𝜏

2
≤ 0, which after rearrangement the

constraint in (36) is obtained. ▪

We can formulate the Lyapunov constraint in (36) into the QP in (10) and (11) to solve for the parameters of the ELM.
A relaxation variable 𝛿 can also be introduced in the Lyapunov constraint (30) to maintain the feasibility of the QP by
softening the Lyapunov constraint. The following barrier and Lyapunov function-based quadratic program (BFLF-QP) is
formulated as follows:

BFLF-QP

[W∗T
, 𝛿∗]T = arg min

(W , 𝛿) ∈ Rnh+1
ED

s.t. []𝜏 , (Safety-Constraint)
[L]𝜏 , (Stability-Constraint), (44)
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SALEHI et al. 905

where

ED =
Tn∑
t=0

[ẋ(t) − ̂̇x(t)]T[ẋ(t) − ̂̇x(t)] + 𝜇W (tr(W TW)) + p𝛿2 (45)

[]𝜏 = −Jx([x]𝜏)Σ𝜃 − 𝛾h3([x]𝜏) ≤ −h2([x]𝜏) ∀[x]𝜏 ∈ 𝜏 , (46)

[L]𝜏 = ([x]𝜏 − x∗)TΣ𝜃 ≤ −𝛽([x]𝜏) − V
𝜏

2
+ 𝛿, ∀[x]𝜏 ∈ 𝜏 , (47)

where p is a positive constant.

Remark 5. The unconstrained learning for ELM can be used to obtain 𝜖 and 𝜖
′ to be used in constraints (46)

and (47).

The following Lemma shows that the trajectory of the system (8) generated using W * in (44) is forward invariant
with respect to the safe set 0, and it remains UUB in the presence of an external disturbance. Consider the perturbed
system of (8)

ẋ = f (x(t)) + d(x(t)), (48)

where d(x) is the deterministic disturbance, and it is assumed to be bounded, that is, ||d(x)|| ≤ d.

Lemma 4. (Robustness analysis) The trajectories of the system in (48) are robust to external disturbances d(x) such that for
a bounded disturbance ||d(x)|| ≤ d, the following inequality holds ||x − x∗|| ≤ 𝜖+d

𝜌
, ∀t > t0 +T, which T ≥ 0.

Proof. Since the reciprocal BF formulation is used in this article, the application of perturbation/disturbances to the
system dynamics in (8) will only keep the trajectories of (8) inside the set 0 if the perturbation/disturbance is small
enough such that the trajectories do not leave the set 0.37

Differentiating the Lyapunov candidate function V(x) selected in the proof of Lemma 3 along the solution of (48) gives

V̇ = (x − x∗)T(Σ𝜃 + 𝜖(x)) + (x − x∗)Td(x), (49)

which can be utilized to rewrite the constraint in (30) as follows

V̇(x) ≤ −𝜌||x − x∗||2 + ||x − x∗||(𝜖(x) + d(x)). (50)

After upper bounding and completing the squares, (50) can be further simplified, and it is given by

V̇(x) ≤ −𝜌V(x) + (𝜖 + d)2

2𝜌
. (51)

Thus, invoking theorem 4.18 in Reference 36 the ultimate bound is given by ||x − x∗|| ≤ 𝜖+d
𝜌

, ∀t > t0 +T, and T ≥ 0, which
implies that the state trajectory of (8) in the presence of an external disturbance remains UUB. The provided bound on
the error between the system trajectories and the equilibrium point is a measure of the error of the reproduced trajectories
as a function of the external disturbance acting on the system. The parameter 𝜌 can be selected to reduce the bound on
the error. ▪

3.2.3 Encoding safety and stability constraints

Consider the BFLF-QP developed in (45), the objective is to minimize the sum of squared error and of an relaxation
variable 𝛿, while satisfying the []𝜏 and [L]𝜏 constraints in (46) and (47), respectively. The []𝜏 constraint guar-
antees to keep the system trajectories invariant with respect to the safe set 0, and the [L]𝜏 constraint satisfies the
stabilization objective. While the result of Theorem 1 enables the constraints in (46) and (47) to be evaluated at a
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906 SALEHI et al.

Algorithm 1. Active sampling strategy for the computation of the barrier and Lyapunov constraints

1. Obtain the discretized region 0 using a uniform sampling strategy, an empty sample pool set Ψ̂, and an initial guess
of Ŵ0 using standard learning scheme for ELM.
2. Draw Ns random samples without replacement from the uniformly distributed points inside the invariant region 𝜏

to be stored inside a new set Ψ.
3. Use Ŵ0 to compute the barrier and Lyapunov constraints in (46) and (47) on the points inside the set Ψ.
4. Sort constraints that violate []𝜏 and [L]𝜏 based on their values.
5. Select top N = p ⋅ Ns violators from the set Ψ such that p ≤

N
Ns

; and if p> N
Ns

then resample the set Ψ and follow the
procedure again.
6. Add a few more points from the area close to the boundary set 𝜕𝜏 to make sure enough points are selected for the
computation of the constraints.

finite number of points, the number of sampling points can still be very large and grows even larger with respect to
the dimension of the state space. To further reduce the sampling space and overcome the challenge of validating the
BF and Lyapunov constraints on a large number of points, an active sampling strategy is introduced in the following
section.

3.2.4 Active sampling strategy

This section describes an active sampling strategy to sample efficiently from the discretized constraint set 𝜏 . Given the
sample trajectory data as well as the discretized region, in the first step the standard learning scheme for ELM, namely,
ridge regression is used without any constraints to learn the parameters of the network. Next, Ns random samples Ψ =
{𝜓1, … , 𝜓Ns} ⊂ 𝜏 are drawn at random from the uniformly distributed points inside the invariant region 𝜏 to verify
whether the selected points violate either or both of the constraints in (46) and (47). The violators are then added to the
set Ψ̂ given by

Ψ̂ = ([]𝜏 ∪ [L]𝜏), (52)

where []𝜏 and [L]𝜏 are the complements of the sets []𝜏 and [L]𝜏 , respectively. Note that initially the sample pool
Ψ̂ = {∅} is an empty set.

The choice of Ψ̂ stems from the fact that if one were to solve the BFLF-QP in (45) analytically using, for example, the
Lagrangian relaxation method with Karush–Kuhn–Tucker multipliers,33 there would be four different cases to consider
depending on the activation of each constraint. The four cases are (1) when both constraints are inactive, (2, 3) when
only one of the two constraints is active, and (4) when both constraints are active. The set Ψ̂ in (52) is a complement
of a set whose element jointly satisfies the two constraints in (46) and (47). Therefore, selecting points from Ψ̂ implies
that the last three cases satisfied. Note that the first case is satisfied when the set is empty, which is already considered
when an initial estimate of the ELM parameters is obtained. The termination criterion of the sampling procedure is
obtained using the sorted lists of []𝜏 and [L]𝜏 based on their quantitative values such that p percent or less of Ns
are selected. For example, let N = N + NL − N[L]𝜏

be the violators from the set Ψ, where N, NL, are the top suitably
selected points from []𝜏 and [L]𝜏 , respectively. Moreover, N[L]𝜏

denotes the points that are accounted in both sets
[]𝜏 and [L]𝜏 , that is, []𝜏 ∩ [L]𝜏 . If p >

N
Ns

, then the algorithm starts over from resampling the set Ψ and follow the
procedure again.

Finally, a few more points from the area close to the boundary set 𝜕𝜏 are added to ensure that enough points close
to the boundary are selected to compute the constraints. The algorithmic view of the active sampling strategy is given in
Algorithm 1.

Using the active sampling strategy in Algorithm 1, the modified optimization problem is given by
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BFLF-QP

[W∗T
, 𝛿∗]T = arg min

(W , 𝛿) ∈ Rnh+1
ED

s.t. Ψ̂. (Safety and Stability Constraints). (53)

4 EXPERIMENTAL VALIDATION

In this section, first the proposed method is evaluated in simulated settings and then the effectiveness of the method using
a Baxter robot is demonstrated.

4.1 Simulation

The experiments are conducted using a MacBook Pro with an Intel i7 processor and 16 Gigabytes of memory. The method
is coded using MATLAB 2018b, and it is tested on the shapes from the LASA human handwriting dataset.14 The chosen
dataset consists of 7 demonstrations where the handwriting motions were collected from a pen input using a Tablet PC.
The estimates of the slopes and biases are obtained using the BIP algorithm presented in Reference 34. In the simulation,
MATLAB is used to solve QP problem with linear constraints. The design parameters of the QP problem in (53) are selected
as follows: 𝛾 = 10 𝜌 = 0.01, 𝜏 = 1, and 𝜇W = 0.01. The upper bounds 𝜖 and 𝜖

′ are selected empirically.

4.1.1 Evaluation of model with safety constraints

The objective is to design a barrier constraint to be enforced while learning the parameters, that is, the output weights of
the ELM, in order to guarantee the solutions of the underlying DS stay within the selected barrier certificate. The barrier
certificate is selected such that it encloses all the demonstrations. Two shapes for the barrier certificate are chosen, an
ellipse and a circle. Once the model is learned, the parameters are used to forward propagate the dynamics from various
initial conditions inside and outside the invariant set. Figure 3(A,B) illustrate reproduction of trajectories using a model
that uses only reciprocal BF B(x) = 1

h(x)
. As it can be seen from Figure 3(A,B), trajectories that are initialized outside the

safe region do not reenter the barrier region and those trajectories that are initialized inside the barrier region remain
inside the invariant set. From Figure 3(A,B), it is seen that the trajectories initialized just outside the barrier region and
neighboring initial points just inside the barrier region have completely different behavior which is to be expected from
enforcing the barrier constraints in the learning process.

To showcase the significance of using a sampling strategy in order to achieve efficiency in learning, the active sampling
method described in Section 3.2.4 is implemented on another set of experiments with a similar objective. That is, to learn
a nonlinear function f (x) subject to the barrier constraints such that the solution trajectories of DS in (1) are invariant
in a closed set. Figure 5 shows that boundary of the invariant regions are effectively blocking any solution trajectories to
crossover, while only a few samples are selected for learning. The results of the experiments for training ELM networks
with and without the active sampling method are computed over five independent runs and the average of each measure,
that is, the CPU time and the number of sampling points, are summarized in Table 1. As it can be seen from the table,
when the active sampling method is used the CPU time is significantly reduced for both shapes. Therefore, the claim
that a fewer number of points translate to a fewer number of constraints, and thus faster convergence to a minimum
point in terms of the computation time, is verified by the results. The average of CPU time for the optimization problem
computed over 5 different runs is reported in Table 1. To illustrate the robustness of the learned model, a perturbation is
applied to the position updates at random time instance t with amplitude a and direction v according to the systematic
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908 SALEHI et al.

F I G U R E 3 The streamlines of the solutions of dynamical system models (in gray) are shown along with the demonstrated data (in
solid red lines) and the reproductions (in dashed blue and green lines) for circular barrier function (A) and elliptical barrier function (B)
[Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 4 Ellipse and circle are used as smooth functions (black) to construct a barrier certificate that splits the state space into safe
region (light gray) and unsafe region (dark gray). Illustration of the learned model’s ability to handle perturbations [Colour figure can be
viewed at wileyonlinelibrary.com]

method described in Reference 48. Figure 4 shows the results of the sudden perturbation experiment during the motion
reproduction. Note that the black arrows in Figure 4 shows the direction and amplitude of the applied perturbation.

4.1.2 Evaluation of model with safety and stability constraints

In learning complex motion dynamics, it is essential to provide stability and safety guarantees on the learned model. In
other words, it is important to ensure that the motion reproductions converge to the desired goal location while remaining
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SALEHI et al. 909

F I G U R E 5 Illustration of the model learning using active sampling strategy that selected most informative points (green dots) for
training [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 1 Network learning with and without active sampling

Without active sampling With active sampling

No. of points used for learning CPU time (s) No. of points used for learning CPU time (s)

Circle 3209 192.38 519 3.40

Ellipse 1411 109.03 441 3.63

inside a predefined region known to be a safe operating zone for robots. Therefore, the objective in this section is to
design a barrier constraint to be enforced while learning the parameters of the ELM, in order to guarantee the solutions
of the underlying DS stay within the selected barrier certificate while maintaining the shape of the demonstrations and
converging to the target location.

Similar to the previous section, ellipse and circle shapes are used to express the safe regions, and reciprocal BF B(x) =
1

h(x)
is used to enforce the positive forward invariance of the selected regions. In Figure 6, exemplary complex motions

“Snake”, “Sshape”, and “WShape” from the LASA handwriting dataset are used to show that models that are learned
solely with stability constraints are only able to converge to the target location without any safety guarantees. As can be
seen, for models in Figure 6 the safety of the DS with respect to the ellipse or circle are not preserved, and clearly, the
vector field (gray streamlines) crosses the boundary. On the other hand, models that are learned with both safety and
stability constraints, the reproductions are guaranteed to not only converge to the target location but also remain inside
the predefined safe region (ellipse and circle) for all time. Figure 7 shows models of a few complex shapes from the dataset,
learned with both barrier and Lyapunov constraints. The streamlines of the models are shown to remain inside the safe
regions while converging to the target location, and the streamlines that are outside of the safe region will bounce off the
virtual wall (barrier) if they get close. The models are trained with the most informative points selected using the active
sampling strategy given in Algorithm 1.

4.2 Robot implementation

To demonstrate the utility of the proposed method in robot motion generation, four robot experiments are carried out. All
experiments involved the use of the ELM, trained on the demonstrations of the “Line” and “Angle” shapes, to generate
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910 SALEHI et al.

F I G U R E 6 Models of Snake, Sshape, and WShape from the LASA handwriting dataset, learned only with Lyapunov stability
constraints. The streamlines of the models (in gray) are shown along with the demonstrated data (in solid red lines) and the reproductions (in
broken blue lines) [Colour figure can be viewed at wileyonlinelibrary.com]

reference trajectories for a seven degree-of-freedom Baxter research robot to reproduce the demonstration. The demon-
strations are in two dimensions x and y with a fixed height z, which are in Cartesian space. The built-in low-level controller
and inverse kinematics engine, IKFast49 on Baxter robot are used to convert the demonstrations from Cartesian space to
joint space suitable to execute the reproduced trajectories.

The first experiment is conducted to show that the learned model is capable of generating trajectories inside the
invariant set from different initial conditions. Note that the experiments are carried out for a longer duration of time than
the original demonstrations to show that the trajectories always remain inside the safe region. In every trial the robot
successfully remained inside the safe region location. An example sequence of images showing the Baxter robot moving
along the reproduced waypoints inside the safe region without hitting the ellipse shape boundary is shown in Figure 8.

In the second robot experiment, the robustness of the learned model to sudden perturbation is tested to support the
claim made in Lemma 4. The perturbations were chosen according to the guidelines in Reference 48 and were applied
using the control software. To implement the spatial perturbations on the robot, sudden perturbations are introduced
during reproduction at random instances by a human operator.

In the third and fourth experiments, a more realistic application of the proposed method is tested. A round table was
chosen as a desired working space for Baxter robot to perform a simple pick-and-place task while following the “Angle”
shape trajectory and converge to the target location. Figure 9 shows sequence of images where Baxter robot is following
a trajectory generated from a model that uses merely stability constraints. As it can be seen in Figure 9, it is very likely
that the robot’s end-effector leaves the safe zone (its working space) particularly for the cases where the motion starts at a
different initial condition other than the one used for training. On the other hand, if the model is trained with both safety
and stability considerations, as it is seen in Figure 10, the robot’s end effector remains inside the working space regardless
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SALEHI et al. 911

F I G U R E 7 Models of Snake, Sshape, Worm,WShape, MultiModels_1, and MutltiModels_3 from the LASA handwriting dataset, learned
with both barrier and Lyapunov constraints. The streamlines of the models (in gray) are shown along with the demonstrated data (in solid
red lines) and the reproductions (in broken blue lines). Green dots are the selected points for training the models using the active sampling
strategy [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 8 Sequence of images show Baxter robot moving along the Line shape without hitting the ellipse boundary (top row). The
bottom row of images is showing Baxter robot moving along the Line shape but starting at a different initial condition without hitting the
obstacles kept on the boundary [Colour figure can be viewed at wileyonlinelibrary.com]

of its initial condition. Finally, Figure 11 shows the results of the Baxter implementation of the learning DSs algorithm that
keeps the end effector generated trajectories in a confined space and converges to the desired target location. Moreover,
the result of the learning algorithm that only ensures stability in terms of convergence to the target location is overlaid
on the same figure.

5 CONCLUSION AND FUTURE WORK

A learning method using ELM algorithm with barrier and Lyapunov constraints is presented. To ensure that the trajecto-
ries generated by the learned model remain inside a safe region, and at the same time motion reproductions converge to
the desired goal, BF constraints along with constraints derived using Lyapunov analysis are enforced while learning the
parameters of the model. Analysis of the results in Section 4 reveals that enforcing the constraints discussed in Section 3.2
while learning the parameters of the model guarantees that the approximated solutions of the DSs remain inside the safe
region and converge to the target location. The former statement is true as long as the initial condition belongs to the for-
ward invariant set, which is defined by the BF to be enforced during the optimization. Section 4.2 validates the proposed
method’s ability to learn models from demonstrations and to provide guarantees such that the learned model remain
inside the safe region defined by the BF. Future work will explore the use of the algorithm presented in this article for the
obstacle avoidance in the trajectory learning methods.
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912 SALEHI et al.

F I G U R E 9 Sequence of images show that Baxter robot performing a simple pick-and-place task while moving along the Angle shape
trajectory to converge to the target location (black star). While stability constraints ensure the robot end effector converges to the goal location
during reproductions (dashed blue line), depending on the initial condition (black circle), it is very likely that the robot end effector goes
outside of the working space when the model is trained without any safety constraints [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 10 Sequence of images show the robot’s end effector converges to the target location (black star) from any initial condition
(black circle) inside its working space when the model is trained both with safety and stability constraints. The reproduction is shown in a
blue dashed line [Colour figure can be viewed at wileyonlinelibrary.com]

ACKNOWLEDGMENTS
This work was in part by a Space Technology Research Institutes grant (number 80NSSC19K1076) from NASA Space
Technology Research Grants Program, in part by the U.S. Department of Energy’s Office of Energy Efficiency and Renew-
able Energy (EERE) under the Advanced Manufacturing Office Award Number DE-EE0007613, and in part supported by
the Subaward No. ARM-17-QS-F-04 from the Advanced Robotics for Manufacturing (“ARM”) Institute under Agreement
Number W911NF-17-3-0004 sponsored by the Office of the Secretary of Defense.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

 10991115, 2021, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/acs.3237 by U

niversity O
f C

onnecticut, W
iley O

nline L
ibrary on [28/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


SALEHI et al. 913

F I G U R E 11 Baxter implementation results showing
reproductions using a model trained with stability and safety
constraints along with a model trained merely with a stability
constraint [Colour figure can be viewed at wileyonlinelibrary.com]
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