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Chapter 7

Learning and Coordination of Movement
Primitives for Bimanual Manipulation

Tasks using Concurrent Synchronization

Ashwin Dani, Iman Salehi and Kyle Hunte

7.1 Introduction

Coordination of multiple robots is very useful in advanced manufacturing applica-

tions, where the robots can be used to pick up, transport and manipulate heavy

and/or deformable objects, performing a wire harness assembly or a screw assem-

bly. This chapter focuses on methods that involve coordination between the two

arms. Dual arm manipulation can be broadly classified into uncoordinated and co-

ordinated manipulation [Smith et al. (2012)]. Coordinated dual arm manipulation

can further be categorized into goal-coordinated and bimanual manipulations. In

goal-coordinated manipulation, the two arms are not interacting with each other

but they are coordinating to achieve a same end goal, such as filling up a box with

wooden pallets, sanding different parts of a workpiece to achieve a time-efficient

sanding operation, bimanual cleaning operations [Langsfeld et al. (2016)]. In con-

trast, bimanual manipulation requires the arms to interact with the same object.

Naturally, bimanual manipulation requires two arms to synchronize and move with

a defined transformation to carry out a common goal, such as tying a knot by pulling

different parts of the string, uncurling the curled wires in wire harness assembly,

carrying heavy wooden/metal pallets, transporting large deformable objects like

fabric, composite materials. In this chapter, we present coordinated control laws

to synchronize motions of two arms for bimanual manipulation, where the learning

and coordination for bimanual manipulation tasks are considered. The synchro-

nization of arms is achieved by considering transformations such as a fixed rigid

transformation, reflection/mirror transformation or time-varying transformations.

The dynamics of the task for one of the arms are first learned from demonstration

data using dynamic movement primitives (DMPs). In the same spirit as [Chung and

Slotine (2009); Chung et al. (2013)], a concurrent tracking and synchronization laws

based on contraction analysis are derived for the two arms to track the trajectory

generated by the DMP and achieve coordination of two arms.

In this chapter, DMP representation is used for encoding both discrete and pe-
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riodic motion. Kinesthetic demonstration obtained from robotic arm manipulator

is used to learn the DMP. The demonstration may include the motion (position,

velocity, acceleration) in robot joint space or robot task space represented using

3D positions and orientation angles. If the dynamics of end effector pose (posi-

tion+orientation) are learned using DMPs, inverse kinematics solution is required

to convert the end effector pose to joint angles during implementation using robot

arm manipulators. Learning the dynamics of two arms using independent sets of

DMPs does not take into consideration the task-specific spatio-temporal constraints

of the two arms. Hence, the two arms controlled using independently learned sets

of DMPs might fail to complete the bimanual task, especially under perturbations

(e.g., one arm is pushed while dual-arm wooden pallet transportation operation is

in action). This issue can be circumvented by synchronizing the motions of two

arms according to task-specific constraints. The end-effector motion dynamics of

one of the arms is modeled using a set of DMPs. The learned set of DMPs is used as

the desired trajectory for one arm, while a pose transformation is applied to obtain

the desired end-effector trajectory for the second arm. The transformation can be

different based on the task objectives, and it can be any combination of translation,

rotation and reflection. The transformation depends on the geometry of the object,

which can be estimated using vision based estimation algorithms (see e.g., [Dani

et al. (2012); Dani and Dixon (2010); Gans et al. (2008); Yang et al. (2015); Chwa

et al. (2016)]).

For ensuring tracking of the desired trajectories of both the arms, a tracking

controller is designed for each arm. The desired trajectory for one of the arms is

obtained using a DMP and the other arm is obtained using a task space transfor-

mation between two arms. In addition, the synchronization between both the arms

is essential in bimanual manipulation tasks for ensuring the temporal and spatial

constraints between two arms are satisfied at all times. The synchronization be-

tween the motions of two arms is achieved by adding tracking error from one arm

as feedback to the controller of another arm, called as a coupling term. The gains

of the feedback term are selected such that the error dynamics for the two arms

are contracting ([Lohmiller and Slotine (1998)]). Solutions of contracting dynamics

are robust to external perturbations and exponentially forgets the initial condition.

Hence, the solutions of the error dynamics converge towards each other. The con-

traction ensures robust tracking of the desired trajectory of two arms in the task

space even under perturbations.

The synchronization laws presented in this chapter are generic and can be used

for synchronization of more than 2 arms coordinating in different configurations,

e.g., a) a cyclic configuration, b) all-to-all configuration. In cyclic structure, every

agent is coupled only with the next and prior agents and all the couplings are bidi-

rectional couplings [Chung and Slotine (2009); Chung et al. (2013); Bandyopadhyay

et al. (2017)]. In all-to-all structure, every agent is coupled with all the other agents

in the system and similar to the cyclic structure, all the couplings are bidirectional.
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For dual-arm manipulation, both of these configurations coincide with each other.

Three different experiments are presented. These experiments are inspired by

some of the commonly occurring tasks in manufacturing and assembly operations.

Some examples include bimanual motion coordination for holding a flexible wire

with two hands for an insertion into a pin operation, coordinating motions of two

hands to pull a box in which an object is kept which is being supported by the other

arm, motion coordination for bimanual surgeon’s knot tying operation or bimanual

paper folding operation for origami folding [Balkcom and Mason (2008); Namiki

and Yokosawa (2015)].

Experiment 1: In the first experiment, a wooden pallet transportation task is con-

ducted using a Baxter robot. End effector data is collected in task space and a DMP

is learned based on the position and orientation data. For this task, the end-effector

task space pose transformation between two arms is a nearly fixed transformation.

Using the tracking and synchronization control laws the task of moving the wooden

pallet from one location to other is performed. This experiment shows utility of

the bimanual coordination approach for manufacturing tasks involved in wire har-

ness assembly mentioned above. Perturbations are added to one of the arms while

the pallet transportation task is in motion. The results show that the other arm

synchronizes its motion to the perturbed arm’s motion exponentially fast. The syn-

chronization feature is important so that the robot does not drop the object while

the transportation task is in process.

Experiment 2: In the second experiment, a capability of adaptation to the change

in goal location while the task is progress is demonstrated. It is shown in experi-

ments that with the change in reaching goal location of one of the two robot arms

in task space, the other arm is able to synchronize its motion to the new location

without disturbing the bimanual manipulation task. Such a capability is very useful

in the manufacturing tasks such as sliding a box on the table with one of the robot

arms and an object kept in the box is supported by the other robot arm.

Experiment 3: In the third experiment, a knot tying task is carried out using

coordination of two arms. DMP is learned for encoding task space motion of one of

the two arms. The knot tying task requires the other arm to move with a reflection

transformation. Knot tying operations are ubiquitous in robotics manufacturing.

For example, tying knots during surgery using robot arms, tying knots in parachute

packing operations, etc. An implementation of knot tying task on Baxter robot is

presented.

Related Work

Several works have introduced control designs that enable coordination between

the two arms. Classical approaches consider force or motion control of closed

chains formed by the arms and an object. Methods involving input-output lin-

earization [Yun and Kumar (1991); Sarkar et al. (1997)], hybrid/force control [Doul-

geri and Golfakis (2006); Watanabe et al. (2005); Tinós et al. (2006); Erhart and



April 2, 2019 20:6 ws-book961x669 Recent Advances in Industrial Robotics output page 4

4 Recent Advances in Industrial Robotics

Hirche (2013)], impedance control [Schneider and Cannon (1992); Bonitz and Hsia

(1996a,b); Erhart et al. (2013)], neuro-adaptive control [Gueaieb et al. (2007); Zhao

and Cheah (2009); Lian et al. (2002)] have been used to either maintain a desired

object pose or track a desired pose trajectory. In contrast, this chapter treats the

two arms as separate agents and focuses on their coordinated motion. Earlier work

has demonstrated the use of a leader-follower architecture in the coordinated motion

of the two arms [Kume et al. (2007); Sun and Mills (2002); Zhu (2005)]. In such

configurations, the leader is assumed to be the desired or optimal trajectory and the

follower arm is controlled to follow the trajectory (after suitable transformations)

of the leader arm. In [Dauchez et al. (2005); Huebner et al. (2009); Maitin-Shepard

et al. (2010)], methods that rely on visual feedback to coordinate the arms via

visual servoing are developed. Such methods ensure that the motion of the arms

minimizes the error between the observed features and the desired features of both

the arms. Motion planning of multiple arms is studied for coordinated motion of

dual arm manipulators and grasp planning using multiple robots [Knepper et al.

(2013); Barraquand and Ferbach (1994); Dogar et al. (2015); Bien and Lee (1992);

Sezgin et al. (1997); Harada et al. (2014); Basile et al. (2012)]. Motion planning-

based methods are capable to joint space control that take into account obstacles.

Control architectures for formation control of multiple robot arms has been studied

in [Li et al. (2008); Sieber et al. (2013); Hirata et al. (2003)].

Another approach for creating robot trajectories is based on learning from

demonstration (LfD), which requires demonstration of the task to be performed

by the robot. Learning-based approaches [Zöllner et al. (2004); Calinon et al.

(2010)] leverage statistical learning to teach robots new tasks from demonstrated

data and provide the ability to perform those tasks by adapting to the changes in

the workspace. One of the LfD algorithms, called DMP, represents both learnable

point attractor systems and limit cycle attractor systems which can be used to en-

code discrete and periodic trajectories, respectively [Ijspeert et al. (2013)]. Besides

the attractor system, DMP consists of a learnable autonomous forcing term which

is guided by a canonical system. DMPs can be used to learn motion trajectories

such as point-to-point reaching motions, grinding, polishing operations, etc. which

involve either discrete or periodic motions of the end-effector in workspace. DMP

can also encode the periodic motion and its transient behavior [Ernesti et al. (2012)]

for single arm motion learning. In this representation, an oscillator, which is a sta-

ble limit cycle is used as a canonical system that guides the forcing term. In [Park

et al. (2008)], the online obstacle avoidance feature is incorporated into a DMP by

simple addition of repelling force around obstacles in acceleration term. In [Ta-

mosiunaite et al. (2011)], simultaneous goal and parameter learning is carried out

for a pouring task. In [Bitzer and Vijayakumar (2009)], learning of DMPs in joint

space is discussed for the adaptation of DMP learned in joint space. In [Matsub-

ara et al. (2010, 2011)], a method of learning DMPs from multiple demonstrations

by finding the styles in the shapes of desired attractor landscapes from multiple
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demonstrations without losing the useful properties of DMPs is discussed. DMPs

are also used in joining movement sequencing where smooth and natural transitions

in position and velocity are generated with modifications to original DMPs [Nemec

and Ude (2012); Kulvicius et al. (2012)]. DMP has been used for formation control

of multi-agent systems in [Umlauft et al. (2014); Thota et al. (2016)].

Table 7.1: An Overview of Literature on Bimanual Manipulation.

Approaches Methods Literature
Input/Output Linearization [Yun and Kumar (1991)],[Sarkar et al. (1997)]

[Doulgeri and Golfakis (2006)], [Watanabe et al. (2005)]

Hybrid/Force Control [Tinós et al. (2006)], [Erhart and Hirche (2013)]

[Schneider and Cannon (1992)]

Impedance Control [Bonitz and Hsia (1996a,b); Erhart et al. (2013)]

Neuro-adaptive Control [Gueaieb et al. (2007)]

[Zhao and Cheah (2009); Lian et al. (2002)]

Classical Leader-Follower Architecture [Kume et al. (2007)]

[Sun and Mills (2002); Zhu (2005)]

Visual Servoing Coordination [Dauchez et al. (2005)]

[Huebner et al. (2009); Maitin-Shepard et al. (2010)]

[Knepper et al. (2013); Barraquand and Ferbach (1994)]

Motion Planning [Dogar et al. (2015); Bien and Lee (1992)]

[Sezgin et al. (1997)]

[Harada et al. (2014); Basile et al. (2012)]

Formation Control [Li et al. (2008); Sieber et al. (2013); Hirata et al. (2003)]

GMM - Bimanual Coordination [Zöllner et al. (2004)]

GMM with HMM [Calinon et al. (2010)]

[Ijspeert et al. (2003); Ernesti et al. (2012)]

[Nemec and Ude (2012); Park et al. (2008)]

[Tamosiunaite et al. (2011); Bitzer and Vijayakumar (2009)]

DMP [Harada et al. (2014); Matsubara et al. (2010)]

[Matsubara et al. (2011); Kulvicius et al. (2012)]

[Umlauft et al. (2014); Thota et al. (2016)]

LfD GMM - Multivariate Robot Motions [Gribovskaya et al. (2010)]

Iterative Learning Control [Van Den Berg et al. (2010)]

GMM with Lyapunov [Khansari-Zadeh and Billard (2014)]

NN with Contraction [Ravichandar and Dani (2015); Ravichandar et al. (2016)]

GMM with Contraction [Ravichandar et al. (2017); Ravichandar and Dani (2018)]

Apart from DMP, there are other LfD approaches that learns the end-effector

motion trajectories by considering a joint state in the workspace ([Gribovskaya et al.

(2010); Khansari-Zadeh and Billard (2014)]). In our prior work [Ravichandar and

Dani (2015); Ravichandar et al. (2017); Ravichandar and Dani (2018)], the dy-

namics of reaching motions are learned using neural networks (NN) and Gaussian

Mixture Models (GMMs) under contraction analysis constraints. In [Ravichandar

et al. (2016)], this work is extended to periodic motions. For bimanual coordination,

an LfD approach is developed in [Zöllner et al. (2004)] to classify bimanual motions

based on the spatial relationship between the motion trajectories of both the arms.

In [Calinon et al. (2010)], Hidden Markov Models (HMMs) and Gaussian Mixture

Regression (GMR) are used to learn bi-manual tasks from several demonstrations.

While learning-based methods generally perform well in circumstances similar to

those encountered during training, they might fail in unfamiliar circumstances. In
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[Van Den Berg et al. (2010)], an iterative learning controller for two-handed tying a

knot is designed. LfD methods using non-rigid registration for bimanual manipula-

tion tasks are presented in [Schulman et al. (2016)]. In Table 7.1, a classification of

contributions related to coordinated manipulation that appeared in the literature

based on approaches and methods is provided.

Contributions

The contributions of this chapter are as follows.

• Provide an overview of literature for bimanual manipulation.

• Design the control laws for desired trajectory tracking and synchronization

of multi-agent system modeled with DMPs by using contraction analysis.

The contraction analysis provides an exponential convergence to the desired

trajectory, which is important for maintaining accuracy and productivity

in the manufacturing tasks using robots.

• Demonstrate robustness of synchronization laws under perturbations which

is very important for dual arm manipulations. When perturbed all the

agents first synchronize and then resume tracking the desired trajectory,

which is important in tasks such as manipulation with objects in workspace

with two arms. The robustness property is important to prevent carried

object from being dropped while performing bimanual heavy load trans-

portation task.

• Specific control laws and constraints for tracking and synchronization are

derived for performing the bimanual task. This property is useful for per-

forming bimanual coordination tasks such as carrying a rigid object using

two arms, or tying a knot or stripping a wire using two arms of a robot.

• Simulation and experimental results are presented which shows the tracking

and synchronization, robustness of synchronization under perturbations.

An example of moving wooden flanks is presented, where two arms must

synchronize their motion with a rigid relative transformation. This experi-

ment is motivated from many manufacturing operations that are found in

industrial setting such as carrying large and heavy payload. Another ex-

periment for tying a knot is presented, where two arms synchronize their

motion with a reflective transformation between them. This experiment is

motivated from manufacturing operations such as wire stripping operation

or straightening of curled wires in wire harness assembly, tying knots in

medical robotics applications.

Rest of the chapter is organized as follows. In Section 7.2, relevant preliminary

mathematical concepts are revisited. In Section 7.3, modeling of multi-agent system

represented using a system of DMPs and corresponding control design is presented.

In Section 7.4, analyses of control design for tracking and synchronization control

objective are provided. In Section 7.4.3, coordinate transformation between desired
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behavior of multiple agents is provided that can be used to generate desired behavior

of agents given behavior of one of the agents. In Section 7.5, results from two

experiments are provided that implements the multi-agent control framework for

bimanual manipulation task using Baxter robot.

7.2 Preliminaries

In this section, brief review of dynamic movement primitives and contraction anal-

ysis is presented.

7.2.1 Review of Dynamic Movement Primitive

The DMP consists of a transformation system which drives the system to the goal

location, and a canonical system which drives the forcing term that generates the

desired shape of the trajectory.

The DMP that encodes both rhythmic and transient motions is given by

ÿ(t) = Ω2

(
αy

(
βy (g − y (t))− ẏ (t)

Ω

)
+ f (φ (t) , r (t) , w̃, w)

)
(7.1)

where y is the state of the system in (7.1), g ∈ R is the goal location, f : R ×
R × RM × RN → R is the forcing term to generate the desired behavior, where

M and N are the number of basis functions encoding the transient and periodic

motion respectively, w̃ ∈ RM , w ∈ RN are the weights of the basis functions, such

that system in (7.1) represents the desired trajectory closely, αy ∈ R+, βy ∈ R+ are

the constant gains driving the system towards the goal location. In the following

sub-sections, the forcing term f(·), the canonical system that drives the forcing

term, the set of basis functions used to encode transient and periodic behavior are

presented. Further, the construction of f(·) term for encoding discrete motions, i.e.,

point-to-point reaching is also described.

7.2.1.1 Forcing Term f(·) for Periodic Motions

The forcing term f(·) in (7.1), driven by the canonical system is obtained by using

the following formula

f(φ(t), r(t), w̃, w) =

∑M
j=1 ψj(φ(t), r(t))w̃j +

∑N
i=1 ζi(φ(t), r(t))wj∑M

j=1 ψj(φ(t), r(t)) +
∑N
i=1 ζi(φ(t), r(t))

, (7.2)

where ψ : R×R→ R, and ζ : R×R→ R are the basis functions. While ψj(φ(t), r(t))

are the basis functions encoding the transient part of the motion, the basis functions

ζi(φ(t), r(t)) are 2π-periodic in the first argument, and encode the periodic pattern

as described in [Ernesti et al. (2012)].
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Canonical System The canonical system for a DMP that encodes both rhythmic

and transient motions is an oscillator in the phase plane given by{
φ̇ (t) = Ω,

ṙ (t) = η (µα − (r (t))
α

) (r (t))
β
,

φ (0) = φ0

r (0) = r0
(7.3)

where r(t) ∈ R is the distance from center of limit cycle, φ(t) ∈ R is the phase,

α ∈ R+, β ∈ R+ are constants, η ∈ R+ is gain, Ω ∈ R+ defined as Ω = 2π/p is the

frequency of execution, p ∈ R+ is the period of rhythmic movement in seconds and

µ ∈ R+ is the radius of the limit cycle.

Basis Functions The set of basis functions ψj(φ(t), r(t)), j = 1, 2, ...,M are

used to encode the non-periodic transient behavior and another set of basis func-

tion ζi(φ(t), r(t)), i = 1, 2, ...N are used to encode the periodic behavior. This

means that in the beginning of the movement, the system should be only af-

fected by ψj(φ(t), r(t)) while in the long run their impact vanishes and ζi(φ(t), r(t))

smoothly begin to take over the control of the system. Therefore, ψj(φ(t), r(t))

vanish close to the limit cycle, i.e., there exists a µ1 ∈ R+ such that µ1 > µ and

ψj(φ(t), r(t))|R×(0,µ1) = 0. After passing the limit µ1, the ζi(φ(t), r(t)) dominates

the control of the system. Hence, the condition ζi(φ(t), r(t))|R×(0,µ1) = 1 holds.

The value of µ1 is a constant that can be chosen arbitrarily.

Since the movement should be smooth, there has to be a region where the

supports of the ζi(φ(t), r(t)) and the ψj(φ(t), r(t)) overlap. The time needed for the

canonical oscillator to pass that region is called transient fading time tf . To create

the fading region, µ2 is set to be greater than µ1, forcing the supports of ζi(φ(t), r(t))

and ψj(φ(t), r(t)) to at most overlap for r(t) ∈ (µ1, µ2). Here, µ2 ∈ R+ is chosen

such that the transient fading time, which the oscillator needs to converge from µ2

to µ1, is equal to tf .

Encoding Periodic Movement The basis functions ζi(φ(t), r(t)) encode the

periodic pattern and thus should vanish away from the limit cycle. Therefore,

ζi(φ(t), r(t)) = k(r(t))hi(φ(t)) is composed of two functions, where, hi : R → R is

2π-periodic and encodes the periodic pattern and the function k : R → R makes

ζi(φ(t), r(t)) vanish away from the limit cycle. The two functions are given by

hi(φ(t)) = exp(vi(cos(φ(t)− ci)− 1)) (7.4)

k(r(t)) =


1 r(t) < µ1(

1−
(
r(t)−µ1

µ2−µ1

)3
)3

µ1 < r(t) < µ2

0 r(t) > µ2

(7.5)

where, vi ∈ R+ is the variance and ci ∈ R is the mean of the basis function
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Encoding Transient Movement The basis functions ψj(φ(t), r(t)) are arranged

on the phase plane away from the limit cycle. Similarly to the ζi(φ(t), r(t)), the

basis functions ψj(φ(t), r(t)) are composed of two functions: one for the actual

encoding and another one for keeping them away from the limit cycle. Hence,

in each function ψj(φ(t), r(t)) = a(r(t))bj

(∥∥∥∥[ r(t) cos(φ(t))

r(t) sin(φ(t))

]
− pj

∥∥∥∥
2

)
the function

a : R → R ensures that the ψj(φ(t), r(t)) are nonzero only away from the limit

cycle.

The function b : R → R is a standard basis function which can be represented

in the form of a Gaussian. Placing the norm difference into bj leads to a radially

symmetric function centered on pj ∈ R2 on the phase plane with the variance ṽ ∈ R
given by

a (r (t)) =


0 r(t) < µ1

(1− (µ2−r(t)
µ2−µ1

)3)3 µ1 < r(t) < µ2

1 r(t) > µ2

(7.6)

bj (r (t)) = exp
(
−ṽr(t)2

)
(7.7)

7.2.1.2 Forcing Term f(·) for Discrete Movements

In order to obtain a merely point attractor dynamics, the following nonlinear func-

tion f : R × R × RM → R. In order to obtain a merely point attractor dynamics,

the following nonlinear function f : R× R× RM → R

f(x, v, w̃) =

∑M
i=1 Ψiw̃iv∑M
i=1 Ψi

Ψi = exp(−hi(x/g − ci)2) (7.8)

can be used as a forcing term in (7.1) to generate the desired behavior, where M is

the number of basis function encoding the discrete motion, w̃ ∈ RM are the weights

of the basis functions, and x, v are derived from the following canonical dynamical

system that is selected to be a second order dynamical system

v̇ = Ωαv(βv(g − x)− v) ẋ = Ωv (7.9)

similar to (7.1) without the forcing term and thus its monotonic global convergence

to g can be guaranteed with the proper choice of constant gains αv, βv [Ijspeert et al.

(2003)]. The high-level design parameters of the discrete system are Ω, the temporal

scaling factor, and g the goal position. Depending on degrees of freedom associated

with each manipulator, multiple DMPs are needed to represent the dynamics.

7.2.1.3 Learning the Forcing Term

The weights w̃, w are learned such that the system in (7.1) reproduces the demon-

strated trajectory ydemo(t). The required forcing term is computed by rearranging

(7.1) as follows
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ftarget(t) =
ÿdemo(t)

Ω2
− αy

(
βy(g − ydemo(t))− ẏdemo(t)

Ω

)
(7.10)

The weights in the forcing term are learned using linear regression tools.

Also, the attractor point for all the periodic parts is calculated as g =
1

L−Ltrans

(∑L
Ltrans+1

yk(t)
)

, where Ltrans ∈ R+ is the time duration of transient

motion and L ∈ R+ is time duration of the task.

7.2.2 Brief Review of Contraction Analysis

In this section, contraction analysis tool that is used to analyze the stability of the

derived controller is reviewed. Consider a system of the form ẋ (t) = fdyn (x (t)),

where fdyn : Rp → Rp is a nonlinear vector function and x (t) ∈ Rp is a state vector.

Any trajectory which starts in a ball of constant radius centered about a given

trajectory and contained at all times in a contraction region, remains in that ball

and converges exponentially to this trajectory [Lohmiller and Slotine (1998)]. Also,

a region of the state space is called a contraction region with respect to a symmetric

and uniformly positive definite metric M (x, t) = Θ (x, t)
T

Θ (x, t), if

∀x,

[
∂fTdyn

∂x
M (x, t) +M (x, t)

∂fdyn

∂x
+ Ṁ (x, t)

]
≤ −βM (x, t) (7.11)

in that region, where β ∈ R+ is the contraction rate and Θ (x, t) is a square matrix.

Contraction analysis will be used in determining the gains of the closed-loop

system of DMPs with feedback (discussed in later sections) such that the overall

system is contracting.

Theorem 7.1. (Theorem 3 of [Wang and Slotine (2005)]) Synchronization in two

way coupling configuration. Consider two coupled systems. If the dynamics equa-

tions verify ẋ1 − h(x1, t) = ẋ2 − h(x2, t), where the function h(·) is contracting,

then x1 and x2 will converge to each other exponentially, regardless of the initial

conditions.

Proof. See [Wang and Slotine (2005)].

7.3 Multi-agent System of Systems Modeling and Control Design

Let q(t) ∈ Rn be a state vector given by q(t) = [ y1(t), y2(t), . . yn(t) ]T , where the

dynamics of each yi(t), i = 1, 2, .., n is represented using a single DMP. A set of

six DMPs can be used to represent the end effector positions and the end effector

orientations in the form of Euler angles or a set of 7 DMPs can be used to represent

joint motion of a 7 degree of freedom (DoF) Baxter or ABB’s YuMi robots.

For a given agent (e.g. Robot arm), there can be multiple DMPs each associated

with a DOF. An agent with n - DMPs can be represented as follows
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ÿi(t) =− Ωαyiẏi(t)− Ω2αyiβyiyi(t) + Ω2αyiβyigi

+ Ω2fi(φ, r) + ui(t), i = 1, 2, .., n. (7.12)

where ui (t) ∈ R is the external control input. From (7.12), it can be inferred that

in a system with m agents, an ith agent can be represented for i = 1, 2 · · ·m as

follows

q̈i(t) = −Kaq̇i(t)−Kbqi(t) +Kc + Ui(t), (7.13)

where Ka ∈ Rn×n, Kb ∈ Rn×n, and Kc ∈ Rn×n are given by

Ka =


Ωαy1 0 ··· 0

0 Ωαy2

...
...

. . . 0
0 ··· 0 Ωαyn

, Kc =


Ω2αy1βy1g1 + Ω2f1(φ, r)

Ω2αy2βy2g2 + Ω2f2(φ, r)
...

Ω2αynβyngn + Ω2fn(φ, r)

, Kb =


Ω2αy1βyn 0 · · · 0

0 Ω2αy2βyn
...

...
. . . 0

0 · · · 0 Ω2αynβyn

, and Ui(t) =
[
ui1 ui2 · · · uin

]T
.

7.3.1 Control Design

The control input Ui(t) ∈ Rn×1 is applied to an agent to alter its dynamics to

achieve the requirements of tracking and synchronization. The control input in

(7.13) is designed for i = 1, 2 · · ·m as follows

Ui(t) =q̈i,r(t) +Kaq̇i,r(t) +Kbqi(t) +K1 [q̇i(t)− q̇i,r(t)]

+
∑

j∈N(i)

K2 [q̇j(t)− q̇j,r(t)]−Kc, (7.14)

where the gains K1 ∈ Rn×n, K2 ∈ Rn×n, and D ∈ Rn×n are positive definite

diagonal matrices, N(i) represents the agents coupled with ith agent in a system of

m agents, and q̇i,r(t) = q̇d(t) + D (qd(t)− qi(t)) with qd(t) and q̇d(t) representing

the desired trajectory and its velocity term respectively. qd (t) is generated using

the DMPs learned from the demonstration data.

After substituting (7.14) in (7.13), the resulting closed-loop dynamics of the

system are given by

q̈i(t)−q̈i,r(t) = −Ka [q̇i(t)− q̇i,r(t)]+K1 [q̇i(t)− q̇i,r(t)]+
∑

j∈N(i)

K2 [q̇j(t)− q̇j,r(t)] .

(7.15)
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In a system of m agents, let the tracking error ei ∈ Rn×1 of ith agent be defined

as ei(t) = q̇i(t)− q̇i,r(t) = q̇i(t)− q̇d(t) +D [qi(t)− qd(t)]. Based on (7.15), the error

dynamics of the ith agent can be computed as follows

ėi(t) = −Kaei(t) +K1ei(t) +
∑

j∈N(i)

K2ej(t). (7.16)

7.4 Analysis of Multi-agent Tracking Control and Synchronization

In this section, gain designs for tracking control and synchronization of multi-agent

systems with cyclic and all-to-all configurations are presented.

7.4.1 Tracking Control Analysis

Cyclic Configuration For the system in (7.16) with cyclic configuration of cou-

pling, the error dynamics are represented by

Ė(t) = −LcE(t), (7.17)

where E(t) ∈ Rmn×1 and Lc ∈ Rmn×mn are given by E(t) =[
e1(t), e2(t), . . , em(t)

]T
and

Lc =



Ka −K1 −K2 0 . 0 −K2

−K2 Ka −K1 −K2 0

0 . .

. . 0

0 −K2 Ka −K1 −K2

−K2 0 . 0 −K2 Ka −K1


,

respectively.

For the system in (7.17), J = ∂(−LcE(t))
∂E(t) = −Lc and Lc is a symmetric matrix.

With J = −Lc and JT = −Lc and identity matrix as the positive definite metric

M (x), the condition in (7.11) can be written as −Lc ≤ −βImn×mn

2 which in turn

yields

Lc ≥ γImn×mn, (7.18)

where γ = β
2 . By satisfying the condition in (7.18), the system in (7.17) is con-

tracting with the rate of β. Based on (7.18), the conditions for designing gains for

m = 2 are derived first. Then, a generalized case with m ≥ 3 is shown

Systems with Two Agents

For a system in (7.17), with m = 2 agents, the error dynamics representation is as

follows
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[
ė1(t)

ė2(t)

]
= −

[
Ka −K1 −K2

−K2 Ka −K1

] [
e1(t)

e2(t)

]
.

Following the result of m agent system, Ka−K1 > 0, and K2 > 0, the conditions for

selecting gains in this case are given by Ka−K1 +K2 ≥ γ1In×n and Ka−K1−K2 ≥
γ1In×n, where γ1 ∈ R+ for the system in (7.17) with two agents to be contracting.

Systems with More than Two Agents

Given Ka−K1 > 0 and K2 > 0, it can be observed that for a system in (7.17) with

m ≥ 3 in order to satisfy the condition in (7.18), the smallest eigenvalue of matrix

Lc should be greater than γ

λmin(Lc) ≥ γ (7.19)

Therefore, by designing the gains Ka,K1, and K2 such that Ka−K1−2K2 ≥ γIn×n
the condition in (7.19) is satisfied which in turn ensures that the system in (7.17)

is contracting.

Example 7.1. (m = 5)

Similarly, for the system in (7.17) with 5 agents, the error dynamics representation

is as follows


ė1

ė2

ė3

ė4

ė5

 = −


Ka −K1 −K2 0 0 −K2

−K2 Ka −K1 −K2 0 0

0 −K2 Ka −K1 −K2 0

0 0 −K2 Ka −K1 −K2

−K2 0 0 −K2 Ka −K1



e1

e2

e3

e4

e5


In order to satisfy (7.19), the necessary conditions are given by Ka −K1 + 2K2 ≥
γ2In×n, Ka − K1 − K2

2 −
√

5K2

2 ≥ γ2In×n, Ka − K1 − K2

2 −
√

5K2

2 ≥ γ2In×n,

Ka − K1 − K2

2 +
√

5K2

2 ≥ γ2In×n, and Ka − K1 − K2

2 +
√

5K2

2 ≥ γ2In×n, where

γ2 ∈ R+. It can be observed that designing gains such that Ka−K1 +K2 ≥ γ2In×n
is sufficient to satisfy the condition in (7.19).

All-to-all Configuration Considering a system with m agents with each agent’s

error dynamics represented as in (7.16) and all-to-all configuration of coupling, its

error dynamics are given by

Ė(t) = −LaE(t), (7.20)

where E(t) = [ e1(t), e2(t), . . , em(t) ]T and
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La =



Ka −K1 −K2 . . . −K2

−K2 Ka −K1 −K2 .

. . .

. . .

. −K2 Ka −K1 −K2

−K2 . . . −K2 Ka −K1


.

With J = ∂(−LaE(t))
∂E(t) = −La and JT = −La and identity matrix as the positive

definite metric M (x), the condition in (7.11) can be written as −La ≤ −βImn×mn

2

which in turn yields

La ≥ γImn×mn. (7.21)

Given Ka −K1 > 0 and K2 > 0, it can be observed that for a system in (7.20) in

order to satisfy the condition in (7.21), the smallest eigenvalue of matrix La should

be greater than γ.

λmin(La) ≥ γ (7.22)

Therefore, by designing the gains Ka,K1, and K2 such that Ka −K1 − ((m− 1)×
K2) ≥ γIn×n the condition in (7.22) is satisfied which in turn ensures that the

system in (7.20) is contracting.

Example 7.2. (m = 4)

For the system in (7.20) with 4 agents, the error dynamics representation is as

follows


ė1

ė2

ė3

ė4

 = −


Ka −K1 −K2 −K2 −K2

−K2 Ka −K1 −K2 −K2

−K2 −K2 Ka −K1 −K2

−K2 −K2 −K2 Ka −K1



e1

e2

e3

e4

 .
In order to satisfy (7.22), the necessary conditions are given by Ka −K1 + K2 ≥
γ3In×n, Ka − K1 + K2 ≥ γ3In×n, Ka − K1 + K2 ≥ γ3In×n, and Ka − K1 −
3K2 ≥ γ3In×n, where γ3 ∈ R+. It can be observed that designing gains such that

Ka −K1 − 3K2 ≥ γ3In×n is sufficient to satisfy the condition in (7.22).

7.4.2 Synchronization Analysis

Cyclic Configuration Considering the system in (7.17) with m = 2 agents, the

error dynamics of the first agent can be written as ė1(t) = −Kae1 (t) + K1e1 (t) +

K2e2 (t). By adding K2e1 (t) on both sides, the error dynamics of the first agent

can be reformulated as
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ė1 (t)− h (e1 (t)) = g (e1 (t) , e2 (t)) , (7.23)

where h (e1 (t)) = − (Ka −K1 +K2) e1 (t)

and g (e1 (t) , e2 (t)) = K2 (e1 (t) + e2 (t)). Similarly, the error dynamics for the

second agent are given by

ė2 (t)− h (e2 (t)) = g (e1 (t) , e2 (t)) . (7.24)

Based on Theorem 3 of [Wang and Slotine (2005)], (7.23), and (7.24), if

(Ka −K1 +K2) < 0 the trajectories of the error dynamics of both the agents

will always converge to each other exponentially, even under spatial perturbations.

Similarly, for m=3 agents, equations similar to (7.23) and (7.24) can be formulated

to prove the synchronization. Note that for m > 3 agents, all the agents are no

longer coupled with each other. The synchronization can be proved by using the

matrix decomposition approach in [Chung and Slotine (2009)].

All-to-all Configuration Considering the system in (7.20), the error dynamics

of an ith agent can be written as ėi (t) = −Kaei (t) +K1ei (t) +
∑m
j=1,j 6=iK2ej (t).

By adding K2ei (t) on both sides, the error dynamics of the first agent can be

reformulated as

ėi (t)− h (ei (t)) = g (e1 (t) , e2 (t) , ..., em (t)) , (7.25)

where h (ei (t)) = − (Ka −K1 +K2) ei (t) and g (e1 (t) , e2 (t) , ..., em (t)) =

K2 (
∑m
i=1 ei (t)). Similarly, the error dynamics for i+ 1th agent are given by

ėi+1 (t)− h (ei+1 (t)) = g (e1 (t) , e2 (t) , ..., em (t)) . (7.26)

Based on Theorem 3 of [Wang and Slotine (2005)], (7.25), and (7.26), if

(Ka −K1 +K2) < 0, then the trajectories of the error dynamics of any two agents

will always converge to each other exponentially, even under spatial perturbations.

7.4.3 Coordinate Transformation between Agents for Bimanual

Manipulation

The bimanual manipulation can be considered as the system with two agents (right

and left arms). While implementing the learned bimanual task, such as transport-

ing a box and moving it to a new goal location, learning the dynamics of one arm

motion is sufficient. The synchronization and tracking control laws developed in

previous section can be used to obtain the motion of two arms in task space. The

desired trajectory for the second arm can be obtained by transforming the states of

synchronized second arm’s task space motion by a desired fixed or variable trans-

formation.



April 2, 2019 20:6 ws-book961x669 Recent Advances in Industrial Robotics output page 16

16 Recent Advances in Industrial Robotics

Suppose that RξB (t) and LξB (t) are the task space poses of right arm and left

arm end effectors with respect to the robot body reference frame at any given time

t. Also, let LξR (t) be the transformation of the right arm end effector with respect

to left arm end effector, then the relationship between RξB (t) and LξB (t) is given

by LξB (t) = LξR (t) RξB (t). Additionally, if the object being manipulated is

rigid, then the transformation between the two arms’ end effectors is fixed, i.e.,
LξB (t) = LξR

RξB (t). In the case of rigid object manipulation, the constant

transformation LξR is chosen according to the experimental setup. If the object

being manipulated is deformable, then the transformation between the two arms’

end effectors is time varying, e.g., a mirror transformation for a two string pulling

portion of knot tying operation.

Let Ψ ⊂ R6 be the space which satisfies the robot’s end effector position and

orientation restrictions, qR (t) ∈ Ψ and qL (t) ∈ Ψ represent the end effector

positions and the end effector orientations in the form of Euler angles for right

and left arms respectively. Let ftrans : SE (3) → Ψ be a function that com-

putes the end effector position and orientation in the form of Euler angles given

pose and f−1
trans : Ψ → SE (3) computes pose given end effector position and

orientation. The right arm end effector dynamics are learned using DMPs with

qR (t) = ftrans

( RξB (t)
)

as the states. Consider a virtual agent with pose L̃ξB (t)

such that

LξB (t) = LξR (t) L̃ξB (t) . (7.27)

The virtual agent’s dynamics are represented using the same learned DMPs with

qL̃ (t) = ftrans

(
L̃ξB (t)

)
as states. By designing the control law as described in

Section 7.4, qR (t) and qL̃ (t) will converge to each other and track the desired

trajectory. The left arm end effector pose LξB (t), is obtained by using L̃ξB (t) =

f−1
trans (qL̃ (t)) and (7.27).

7.5 Experimental Results

Three experiments involving the bimanual manipulation tasks are performed using

the learned DMPs and the control laws designed in Sections 7.4. The experiments

are implemented using Robotics toolbox of [Corke (2011)] with MATLAB 2014b on

a computer running a Intel i5 processor with 8 Gigabytes of memory. Kinesthetic

demonstrations are obtained using the Baxter robot platform in order to learn the

DMPs.

7.5.1 Experiment 1

A single kinesthetic demonstration of a bimanual manipulation task with a solid

object as shown in Fig. 7.1 is obtained using the 7 degrees of freedom Baxter robot.

The DH-parameters of the robot are used to obtain the end effector pose (position

and orientation) of the robot arms during the task. To test the robustness of the
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Algorithm 1: Learning and Synchronization of Movement Primitives for Bi-

manual Manipulation Tasks

1 Obtain a joint angle measurements of the robot through kinesthetic

demonstrations while user performing the task by guiding the robot arms;

2 Obtain the end effector pose from join angle measurements using

DH-parameters of the robot;

3 Obtain the position, velocity, and acceleration estimates of the pose of the

end effector using Kalman filter with constant acceleration model;

4 Define the gains of the DMP attractor system and the canonical system;

5 Learn the forcing terms for the single arm end effector pose and obtain the

weights of the basis functions in the forcing term;

6 Determine the gains of the closed-loop system such that the overall system in

(7.17) or (7.20) is contracting;

7 Obtain the second arm’s end effector pose by transforming the second agent

in the system as shown in (7.27) for implementation on the robot;

Fig. 7.1: Demonstrations obtained using the Baxter robot platform are shown in

the figure. The pictures in the top row correspond to the transient motion at

the beginning of the task and the pictures in the bottom row correspond to the

subsequent periodic motion.

learned DMPs and the designed control laws, spatial perturbations are applied to

one of the arms and the response of the system containing both the arms is observed.

A DMP is learned in a single dimension, and due to the forward mapping between

the joint-space (R7) and the end-effector space (R6), a set of 6 DMPs is used to

learn the end-effector dynamics of one of the arms of the robot, as explained in

Section 7.2.1. During the learning phase, the gains of the attractor system of each

DMP are chosen to be αy = 32 and βy = 8. The gains and constants used in
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canonical system are chosen to be α = 1
6 , β = 1

1000 , η = 35, µ = 1, µ1 = 1.2, and

µ2 = 1.4. These gains are chosen such that the DMP can accurately reproduce

the demonstrated data. Also, as the task requires the robot to use two arms (i.e.,

two agents in the system (7.17)), the gains K1, K2, and D are selected to be

K1 = 5I6×6, K2 = 45I6×6 and D = 10I6×6 in order to satisfy the contraction

condition given in (7.18). The DMPs are used to represent the task space motion

of one of the arms of the robot, and then the other arm’s dynamics are obtained by

transforming the learned DMPs according to (7.27).

Fig. 7.2: Behaviors of both the arms when one of the arms is perturbed.

Fig. 7.3: 3D representation of the behaviors of both the arms when one of the arms

is perturbed.
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The response of the system to the perturbations is shown in Fig. 7.2. As one of

the arms is perturbed, the other arm deviates from its desired trajectory in order

to synchronize with the perturbed arm. It can be observed from Fig. 7.2 that the

arms synchronize within 0.16 seconds and both the arms converge to the desired

trajectory simultaneously. The 3D representation of both the arms’ behaviors after

the transformation is shown in Fig. 7.3.

Fig. 7.4: Behaviors of both the arms when goal location is changed.

Fig. 7.5: 3D representation of the behaviors of both the arms when goal location is

changed.
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7.5.2 Experiment 2

In the second experiment, the adaption to the goal location changes while perform-

ing a task is demonstrated. The control gains are chosen to be of the same values

as described in Experiment 1. The behaviors of the robot arms with the change in

goal location are shown in Fig. 7.4. Both the arms are able to adapt to the change

in goal location and carry out the task. The 3D representation of the behaviors of

the arms is shown in Fig. 7.5.

7.5.3 Experiment 3

For the third experiment, tying an Overhand knot is considered. For simplicity,

the two ends of a rope are assumed to be spliced together but not fully tightened.

Baxter’s two manipulators that are equipped with the parallel grippers, are used

to grasp the two ends and pull them simultaneously in the opposite directions to

tighten the knot. A single kinesthetic demonstration of one of the Baxter’s arm

pulling on one end of a rope is obtained. During the demonstration, the joints’

trajectory of the manipulator that takes the end effector to the location where

the rope is at a fully tightened state (goal location) is recorded by guiding the

associated arm to the maximum length of the rope. The recorded angular position

and velocity measurements performing the rope pulling task are then used to obtain

the end effector pose and ultimately the position, velocity and acceleration estimates

of the end effector pose. A set of 6 DMPs is used to learn the discrete movements

of the rope pulling task using discrete movements as explained in 7.3. During the

learning phase of the discrete movement, the gains of the attactor system of each

DMP are chosen to be αv = αy = 16, βv = βy = 8. Also to satisfy the contraction

condition in 7.11 the following gains are selected K1 = I6×6, K2 = 0.5I6×6 and

D = 10I6×6. Once the DMPs of one arm are learned, the dynamics of the other

arm are obtained by mirroring the points on the horizontal axis of the Baxter robot

coordinate frames, namely y, by the vertical axis x while the other five dimensions

(DMPs) remain fixed. The behaviors of the robot arms is depicted in Fig. 7.6, and

can be observed that the arms synchronize and both converge to the goal location at

the same time. Note that in Fig. 7.6 the trajectory of the second arm in y dimension

is positive which implies that the second arm moves in the opposite direction from

the first one.

Fig. 7.7 shows the proposed method’s ability to successfully learn the motion

dynamics of the bimanual manipulation task of tightening of an Overhand knot. As

it is shown in Fig. 7.7 Baxter holds the two ends and simultaneously pulls them in

the opposite direction to tighten the knot.

7.6 Conclusion

Literature review shows that the bimanual manipulation is an important problem

for many manufacturing applications. The control laws to achieve tracking and
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Fig. 7.6: Behavior of both the arms while tying an Overhand knot.

Fig. 7.7: Sequences of images showing the Baxter robot tying an Overhand knot

using the tracking and synchronization controller.

synchronization of dual arm manipulator performing bimanual manipulation tasks

are developed. The designed control laws are robust to perturbations and instan-

taneously adapt to changes in the goal location. The experimental results suggest

that the agents of the system in (7.17) are able to synchronize within 0.16 seconds.

Experiments by implementation of the controller on a robot shows the usefulness

of the controllers on a real system. In future, demonstration of the controllers for a

real manufacturing application such as wire harness assembly will be shown.
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