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T
he prospect of a collaborative work environment 
between humans and robotic automation in a 
manufacturing setting [1] provides the motivation 
for fi nding innovative solutions to human-in-
the-loop control for safe, effi cient, and trustwor-

thy human–robot collaboration (HRC), or HR interaction 

(HRI), in cyberphysical human systems (CPHSs) [2], [3]. 
Studies in [4] show that collaborative automation can be 
benefi cial to 90% of approximately 300,000 small-to-me-
dium-scale enterprises in the United States. In the para-
digm of human-centered automation [5], human safety, 
ergonomics, and the collaborative effi ciency of the work 
are given the utmost importance. Traditional methods to 
ensure the safety of humans around factory robots involve 
the use of cages. Recent work looked beyond cage-based 
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safety to provide robot control and sensing-driven solu-
tions for human safety around robots [6]–[8].

The purpose of this article (see “Summary”) is to pro-
vide a tutorial on human-in-the-loop estimation and con-
trol methods to achieve worker safety in the context of 
close-proximity HRC. Examples of current close-proximity 
interaction include collaborative assembly, the cooperative 
carrying of loads, and robot assistants working near humans 
in manufacturing plants in industries such as automotive, 
aerospace, and electronics. 

The article is broadly divided into two main sections. 
The first describes methods for human-action intention 
inference based on sensor data, and the second describes 
safe robot-control policy generation based on an inferred 
human-action intention. State-of-the-art methods in both 
human-action intention and safe robot control are first dis-
cussed, and the mathematics behind them are provided in 
adequate detail (supported by simulation and experimental 
results in certain cases). An overview of intention estima-
tion is first provided by presenting existing literature in a 
tutorial manner, followed by the approaches that focus and 
expand on prior work. Modifications to the algorithms are 
mentioned at the appropriate locations. New experiments 
are conducted, and the results are added to the manuscript. 

Compared to the prior work in [9], a robot control design 
method for generating safe robot-reference trajectories is 
discussed that uses control barrier functions (CBFs) in the 
HRC context. Experiments are conducted using a Kinect 
sensor and the Baxter research robot platform, where a 
human’s trajectory forecast is employed to generate safe 
courses for robots to follow.

A block diagram of human-in-the-loop control with 
human-intention estimation and safe trajectory tracking of a 

robot for collaborative tasks is shown in Figure 1. Use cases 
of such collaborative tasks include the following:

1)	 robot-assisted assembly, where different components 
require various installation methods (distinct models); 
a robot observes a human to determine the current 
model and hence the robot’s own desired actions

2)	 wire harness assembly, in which a human and a robot 
complete certain steps in the fabrication process; for 
instance, for a wire stripping task, a human may reach 
for a tool, indicating to a robot that it must grasp wire 
and take it to the human

3)	 assisted construction/surgery, where a robot is respon-
sible for acquiring the correct tool for the task the 
human is currently trying to perform

4)	 collaboratively moving loads (an experiment is per-
formed for this use case)

5)	 the repair of vehicles in uninhabitable environments 
(such as underwater and in space), where a robot may 
assist a human who has limited ability given the con-
ditions, and the robot has to interpret the human’s 
intention from motion profiles.

INTENTION ESTIMATION
Providing sensing-based human-action intention infer-
ence solutions is one of the important steps toward 
achieving safety during HRC in manufacturing automa-
tion, automotive applications (self-driving cars) [10], 
space robotics [11], and assistive robotics [12]–[16]. 
Studies in psychology suggest that when two humans 
interact, those people infer one another’s intended 
actions for safe interaction and collaboration [17], [18]. 
An optimal control model of human response and its 
applications is examined in [19] and [20]. Based on these 

Summary

T his article provides a perspective on estimation and con-

trol problems in cyberphysical human systems (CPHSs) 

that work at the intersection of cyberphysical systems and hu-

man systems. The article also discusses solutions to some of 

the problems in CPHSs. One example of a CPHS is a close-

proximity human–robot collaboration (HRC) in a manufacturing 

setting. The issue of the joint operation’s efficiency and human 

factors, such as safety, attention, mental states, and comfort, 

naturally arise in the HRC context. By considering human fac-

tors, robots’ actions can be controlled to achieve objectives, in-

cluding safe operations and human comfort. Alternately, ques-

tions arise when robot factors are considered. For example, 

can we provide direct inputs and information to humans about 

an environment and the robots in the area such that the ob-

jectives of safety, efficiency, and comfort can be satisfied by 

considering the robots’ current capabilities?

The article discusses specific problems involved in HRC re-

lated to controlling a robot’s motion by taking the current actions 

of the human in the loop with the robot’s control system. To this 

end, two main challenges are discussed: 1) inferring the inten-

tion behind human actions by analyzing a person’s motion as 

observed through skeletal tracking and gaze data and 2) a con-

troller design that keeps robot motion constrained to a boundary 

in a 3D space by using control barrier functions. The intention in-

ference method fuses skeleton-joint tracking data obtained using 

the Microsoft Kinect sensor and human gaze data gathered from 

red-green-blue Kinect images. The direction of a human’s hand-

reaching motion and a goal-reaching point is estimated while 

performing a joint pick-and-place task. The trajectory of the hand 

is estimated forward in time based on the gaze and hand mo-

tion data at the current time instance. A barrier function method 

is applied to generate safe robot trajectories along with forecast 

hand movements to complete the collaborative displacement of 

an object by a person and a robot. An adaptive controller is then 

used to track the reference trajectories using the Baxter robot, 

which is tested in a Gazebo simulation environment.
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FIGURE 1 A block diagram of human-in-the-loop control, with human-intention estimation and safe trajectory tracking for robots partici-
pating in collaborative tasks. The human dynamics block uses skeletal tracking via red-green-blue-depth sensors. Based on the skel-
etal tracking of one arm, the human trajectory estimator generates an approximation of a person’s reaching action intentions. The robot-reference 
trajectory is produced using the estimated human trajectory so that the robot’s movement is safe.

studies about the principles of human interactions, the 
safety, operational efficiency, and task reliability in HRC 
could be greatly improved if robots were provided the 
capability to infer human-action intentions. For instance, 
in [12] and [21]–[23], inferring a human partner’s inten-
tion is shown to improve the overall performance of 
tasks requiring HRC.

Human intention is inferred via various sensing modali-
ties by measuring different cues captured by sensors that 
are on a person’s body (wearable sensors) or mounted else-
where (nonwearable sensors). Using wearable devices, 
physiological information measured through heart rate, 
skin response [24], [25], and electromyography sensors [26] 
is typically used for gauging human motion intention. In 
[24], human intention is represented using valence/arousal 
characteristics that are measured by physiological signals, 
such as heart rate and skin response. The valence/arousal 
representation of human intention indicates only the degree 
of approval to a given stimulus. Using nonwearable sen-
sors, cues such as human emotion [27], approval responses 
[24], body posture [28], gestures [29], eye gaze [30], [31], 
facial expressions [32], and skeletal movement [33], [34] are 
measured. Imaging sensors, such as red-green-blue (RGB) 
cameras, are also commonly used. In [35], a human’s inten-
tion to hand over an object is predicted by key features 
extracted from an RGB camera sensor.

For estimating human intention, the dynamics of human 
motion are modeled using probabilistic representations, 
where hidden Markov models (HMMs) [24], [36], [37], 
dynamic Bayesian networks [38], [39], growing HMMs [40], 
and conditional random fields (CRFs) [41]–[43] are employed. 
In [44], human activities are inferred by an HMM of peo-
ple’s actions and interactions with autonomous mobile 
robots. In [45], a human intent estimation algorithm based 
on a fuzzy inference engine is presented. The intention-
estimation problem is formulated only as a relationship 
between attention and physiological measurements, and 
online inference of human intention is not performed.

In [24], an online algorithm to estimate the affective state 
of a person is developed based on valence/arousal repre-
sentation using an HMM. The intention in these methods is 

formulated as a classification problem. Since the future 
state prediction in methods based on HMMs and their vari-
ants is dependent only on the current state, these approaches 
quickly react to changes in intent. However, if the change 
in intent is not frequent, the Markov assumption can be 
overly restrictive, as it prevents these algorithms from 
becoming more certain of human intent through additional 
observations [46].

In another popular paradigm, human motion is repre-
sented using continuous/discrete dynamics that are 
parameterized using dynamic neural networks (NNs) in 
the case of deterministic modeling with noise and through 
Gaussian processes (GPs) and Gaussian mixture models 
(GMMs) in the case of probabilistic modeling. In [23], an 
NN is used to approximate the endpoint of a human hand 
for representing human motion and intent in physical HRC 
applications. In [33], a latent variable representation called 
the intention-driven dynamic model (IDDM) is proposed 
to infer intentions from observed human movements. 
Robot table tennis and human activity classification are 
demonstrated using a belief propagation algorithm cou-
pled with the IDDM. In [47], a human-intention inference 
algorithm is developed using unsupervised GMMs, where 
the parameters of the GMMs are learned using the expecta-
tion-maximization (EM) algorithm.

The framework presented in [47] provides an unsuper-
vised online learning algorithm, while the algorithms 
presented in [33] do not involve online learning. The 
aforementioned approaches use the entire observed tra-
jectory in the prediction of future states. Thus, the cer-
tainty in the estimated intent tends to converge through 
time. These models are typically not good for detecting 
sudden changes in intention. Additionally, the models 
developed through the preceding methods are not all 
learned, considering the stability and convergence to the 
reaching point of human actions/motion. 

In yet another paradigm, action plans are represented as 
policies in terms of state-action pairs. Inverse optimal con-
trol (IOC) and inverse reinforcement learning (RL) algo-
rithms are used to model the intention-driven behavior, 
where the intended motion maximizes an unknown 
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objective or reward function. An inverse linear quadratic 
regulator approach is developed in [48] to predict the intent 
and trajectory forecast of human motion. The applicability 
of human-intention estimation using inverse approaches 
can be found in various applications. For example, human 
motor-control intent estimation in rehabilitation applica-
tions is presented in [49] using an inverse model predictive 
control strategy. Predicting pilots’ behavior by modeling 
their goals through RL and game theory is presented in 
[50]. In [51], human motion during collaborative manipula-
tion is predicted via an IOC approach. The IOC-based tech-
niques typically require exploration of the state space; thus, 
they require large amounts of data for converging to the 
correct solutions. A categorization of intention estimation 
algorithms is given in Table 1.

The intention is defined as a goal location of reaching 
motions and an associated trajectory forecast. Knowing an 
estimate of the goal location is sufficient in many applica-
tions. In such cases, a maximum likelihood (ML) estimator 
can be used. When a distribution of the intention is required, 
a maximum a posteriori (MAP) estimator can be used. Thus, 
two approaches to human-intention estimation are discussed 
that are based on ML and MAP estimation techniques. The 
ML estimator requires more data, compared to the MAP 

estimator (which uses a priori information). When the priors 
are uniform, the MAP estimator gives an ML approximation. 
Hence, ML estimation is a special case of MAP estimation.

In the first technique, the goal-reaching intention is 
modeled as a parameter of the continuous dynamics. An 
ML estimation technique called the approximate EM algo-
rithm is applied to estimate the goal-reaching intention. 
To accommodate changes in motion, an online method 
for NN weight learning is also developed. NN modeling 
of human motion can also accommodate personalized 
factors, such as age and other physical characteristics. 
The algorithm is called the adaptive neural intention 
estimator (ANIE) [34]. In addition to the ANIE algorithm 
presented in [34], gaze information is included to pro-
vide a more accurate initialization to the EM algorithm. 
In the second technique, individual goal-reaching motions 
are represented as multiple dynamical system (DS) models. 
A MAP estimation of intention is obtained through 
an interacting multiple-model (IMM) framework that 
computes probabilities for each goal-reaching motion 
model based on observations. Changes/switches in 
intention can also be detected using the IMM frame-
work. A good prior to the IMM algorithms can improve 
their performance. Hence, additional cues, such as the 

Method Sensor Type Reference

Intention parameter estimation Neural network (NN) Red-green-blue 
depth (RGB-D)

Ravichandar et al. [34]

Gaussian process (GP) RGB Wang et al. [33]

Gaussian mixture model (GMM) RGB-D Mainprice and Berenson [52]

NN Force/torque Li et al. [23]

Action recognition and intention 
classification

Interacting multiple model RGB-D Ravichandar et al. [53]

Hidden Markov model (HMM) Physiological Kulic et al. [24]

Anticipatory temporal conditional 
random field (CRF)

RGB-D Koppula et al. [54]

HMM RGB + laser Kelley et al. [44]

HMM Motion capture Ding et al. [37]

Hybrid dynamic Bayesian  
network (DBN)

RGB Gehrig et al. [38]

Hybrid DBN Agnostic Schrempf et al. [39]

Growing HMM RGB Elfring et al. [40]

Linear-chain CRF RGB-D Hu et al. [43]

GP-latent CRF RGB-D Jiang et al. [42]

GMM Motion capture Luo et al. [47]

Inverse optimal control/inverse 
reinforcement learning (IRL)-based 
intention estimation

Path integral IRL Motion capture Mainprice et al. [51]

Inverse linear quadratic regulator RGB-D Monfort et al. [48]

Inverse model predictive control Encoder Ramadan et al. [49]

Miscellaneous Fuzzy logic Physiological Kulic et al. [45]

Fuzzy logic Force/torque Carli et al. [36]

TABLE 1  A categorization of the intention estimation algorithms based on intention estimation problem formulation.
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direction of a person’s gaze, computed by estimating the 
head orientation from RGB images are used. The algo-
rithm is called the gaze-based multiple-model intention 
estimator (G-MMIE) [9].

In the first method, based on ML estimation, the com-
plex dynamic motion of the human arm is represented 
by a nonlinear system model. The positions and veloci-
ties of the joints are used as the states. The uncertain 
system dynamics are modeled using a dynamic NN [55] 
to represent the state propagation. Intentions are mod-
eled as the goal locations of human arm-reaching 
motions, which are represented by the unknown param-
eters of the state-space model. The issue of intention 
inference is solved as a parameter inference problem, 
given noisy motion data through an approximate EM 
algorithm [56]. The NN estimation can potentially enable 
the consideration of user- and object-specific character-
istics, such as the size and the shape of the object, to be 
included as a part of the dynamics.

Different humans may reach the same point in 3D space 
in various ways based on their physical characteristics. This 
brings a challenge to using the model learned from the 
demonstration data to represent joint position trajectories of 
other subjects. One way of updating the representation in 
real time is to use the EM algorithm by optimizing the Q 
function across the model parameters, along with the inten-
tion. A closed-form expression for the model update using 
EM exists if the model is linear or represented using a radial 
basis function (RBF) NN [57]. However, arm-motion 
dynamics are highly nonlinear, and the RBF may not always 
be the best choice for the basis functions of the NN to repre-
sent human movement. To overcome this challenge, an 
identifier system-based algorithm presented in [58] is used 
for online model updates. The identifier system is designed 
using a robust feedback term: the robust integral of the 
signum of the error (RISE) [59]. Based on the Lyapunov 
analysis, the parameter update laws for the model update 
are derived using the error between the state estimate gen-
erated by the identifier system and the state estimate from 
the original system model. The analysis ensures the asymp-
totic convergence of the state identification errors and their 
derivatives between the learned model and the true model.

The guarantees of online learning can be very useful in 
tasks where the training data are limited and predictions 
have to be made about new users with varying motion 
dynamics in novel environments. For instance, consider a 
wire harness fabrication task in a manufacturing environ-
ment, where the NN is trained using data obtained from a 
user assembling parts to build an object. If the trained NN 
is employed for a new user handling parts of a similar 
object, the NN approximation error is likely to be high, as 
the motion profiles will vary for different users assembling 
dissimilar parts. However, as new data become available, 
the presence of the feedback term enables the identifier 
system to implicitly learn the network weights and 

minimize the effects of NN approximation errors in real 
time [58]. An inference algorithm is then used with the 
updated model for early prediction of the intentions.

In the second method, based on MAP estimation, the 
organizing principles of motion generated in humans are 
used. The principles state that the generated motion is 
inherently closed-loop stable and smooth during various 
tasks [60]. The problem of learning the human arm’s motion 
dynamics is considered. It is formulated as a parameter 
learning problem under goal convergence constraints 
(derived using a contraction analysis of nonlinear systems 
[61]) that aid in learning stable nonlinear dynamics with 
respect to the reaching goal location. Details of the learning 
algorithm can be found in [62]. Such modeling of human 
motion is also useful when a person is represented as a 
point and his or her motion in the 2D/3D space is observed 
as a point motion reaching to varying locations (for instance, 
factory workers moving to different work stations).

Using the learned model, the intention inference is com-
pleted by the multiple-model intention estimator (MMIE) 
presented in [63]. The MMIE algorithm employs an IMM fil-
tering approach in which the posterior probabilities of candi-
date goal locations are computed through model-matched 
filtering (see [64]). When the number of models is very high, 
it is well known that the performance of the IMM filter 
degrades. A variable-structure IMM (VS-IMM) filter can be 
applied in such cases [65]. A limiting case of the VS-IMM 
when the mode space is continuous is presented in [66]. In 
this article, probability priors of the finite number of avail-
able models are computed using a gaze-based prior compu-
tation that helps in reducing the number of possible 
candidates. A set of demonstrations capturing human arm 
joint position trajectories for reaching motions is collected 
by an RGB-depth (RGB-D) camera (Microsoft Kinect). Each 
recorded joint position trajectory is labeled according to the 
corresponding true intention, that is, the 3D goal location of 
the reaching motion. NN models are learned by the labeled 
demonstrations of the joint position trajectories.

HUMAN-IN-THE-LOOP SAFETY 
CONTROL OF ROBOTS
When a robot is collaborating with a human in close proxim-
ity, one of the important problems is to make the robot aware 
of the human’s movement intentions so that the robot can 
adapt its motion controller to operate safely and perform a 
collaborative task. In [21]–[23], inferring a human’s intention 
is shown to improve the overall performance of collaborative 
tasks. In [67], human goal intention is applied in conjunction 
with an admittance controller to achieve HRC. Many contri-
butions to HRI have targeted motion-intention estimation 
for tasks where direct physical interaction between humans 
and robots is involved. For control strategies, the literature 
focuses on designing impedance control laws [12], [23] and 
admittance control laws [67], [68] for adapting the interaction 
forces exerted by a human on a robot when the robot is 
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physically interacting with the person. In [69], a controller is 
developed for HR handover interaction based on dynamic 
movement primitives. In HRC (where there may not be 
direct contact with a human), the human motion intention 
estimation, robot path planning, and control design become 
a more important technical challenge.

There are studies in the literature that address the prob-
lem of robot motion control when humans are present in 
the vicinity of robots and autonomous systems [46], [70]. 
Most of these studies view the problem as a collision avoid-
ance issue and solve it using the potential field approach 
[71]. These control actions are purely reactionary in nature. 
Anticipatory skills are required to improve efficiency and 
safety during collaborative tasks when humans work in 
close proximity to robots [46], [70]. To achieve proactive-
ness, the controller and motion planner must incorporate 
probabilistic information about the possible human actions. 
In [46], predictive modeling of pedestrian motions with 
changing intentions is proposed to plan safe robot trajecto-
ries. Integrated estimation and control for HRI involving 
an industrial robot was proposed in [71]. In [23], a feedback 
controller for HRI is developed based on an NN model of 
human intention. In [52], a stochastic trajectory optimizer 
for motion planning is employed for planning robot arm 
motion based on human intentions.

In [72], scheduling, planning, and control algorithms are 
presented that adapt to the changing preferences of a human 
coworker while providing strong guarantees for the synchro-
nization and timing of activities. In [73], new hierarchical 
planners based on hierarchical goal networks are developed 
for assembly planning in the HR team. In [74], an empirical 
study of human–human interaction is conducted to investi-
gate the ways in which human teammates perform in a coor-
dinated behavior. This study is targeted toward scheduling 
and planning tasks rather than studying human behavior in 
the context of robot motion planning for safety and the pro-
active control of close proximity operations.

In control literature, stability studies of human-in-the-
loop adaptive controllers are presented using the inner–
outer loop control structure in [75]. Stability examinations 
of human-in-the-loop telerobotics with a time delay are 
presented in [76]. These works do not explicitly consider 
safety aspects of the human-in-the-loop systems. Provid-
ing safety guarantees in the learned controller of the 
machine/robot is typically achieved by adjusting the refer-
ence command via a prefilter called a reference governor 
[77]–[79] and by using optimal control under uncertainty in 
a differential game setting.

In [80], an RL method that guarantees stability and safety 
by exploring the state space to collect new data for learning is 
presented. In [81], a safe, online, model-free approach to path 
planning with Q-learning is discussed. A general safety 
framework for learning-based control using reachability 
analysis is introduced in [82]. In [83], a receding horizon 
safe-path planning approach using mixed integer linear 

programming is presented. Safe trajectory generation for 
autonomous operation of spacecraft using convex optimiza-
tion formulation is proposed in [84]. When the region is non-
convex, successive convexification can be performed [85]. A 
detailed survey of, and tutorial on, an L -1 adaptive control 
architecture for safety critical systems appears in [86].

Other methods of achieving the safety property of con-
troller synthesis are to employ a BF/certificate or a CBF, 
which ensures that the closed-loop system’s trajectories 
remain inside a prescribed safe set [87]. There are two can-
didates to construct BFs, namely, reciprocal BFs and zero-
ing BFs. Reciprocal BFs can be of the inverse type and the 
logarithmic type. Similar extensions to CBFs have also 
been developed in the literature. Applications of BFs and 
CBFs in many autonomous robotic systems (such as robot 
manipulators, autonomous vehicles, and walking robots) 
are shown in [88]–[91]. In [88], [90], and [92], BFs were suc-
cessfully applied to DSs, where ensuring safety conditions 
is critical. In [92], time-varying BFs and CBFs for avoiding 
moving and static obstacles are derived, and their applica-
tion to quadcopters that avoid unsafe obstacle regions is 
shown. Robustness properties of the CBFs are studied in 
[93], which shows that if a perturbation (or model error) 
makes it impossible to satisfy the invariance condition for a 
reciprocal BF, then the solution of the model must cease to 
exist because the control input becomes unbounded.

For zeroing CBFs, input-to-state stability results hold in 
the presence of model uncertainties. A concept of exponen-
tial BFs and CBFs is introduced in [94]. The method of CBFs 
is extended to position-based constraints with relative 
degree two in [95] to address the safety constraints for sys-
tems with a higher relative degree. Furthermore, a backstep-
ping-based method to design CBFs with a higher relative 
degree is also introduced. However, achieving a backstep-
ping-based CBF design for systems with a higher relative 
degree is challenging. In [94], a concept of exponential CBFs 
is presented that can handle state-dependent constraints for 
systems with a higher relative degree. In [96], a safety-aware 
RL framework using BFs is proposed. However, the applica-
tion of BFs and CBFs to HRC is new, and there are still many 
unaddressed technical challenges. In the recent work pre-
sented in [97], a methodology is proposed to learn system 
dynamics that can be harnessed to generate a robot’s desired 
trajectories, which are strictly bounded within a prescribed 
safety set. An adaptive controller that accepts the human-
intention estimation in the loop for trajectory synchroniza-
tion appears in the recent work in [9].

In this article, a safe trajectory generation algorithm that 
uses the inferred human trajectory from the intention esti-
mator is developed. The safe trajectory is then provided to 
the robot for tracking via a feedback adaptive controller for 
the nonlinear Euler–Lagrange (EL) system that adapts to 
the uncertainties in the model. EL dynamics are widely 
used to represent the dynamics of robot manipulators. In 
the controller stability analysis, errors due to the inferred 
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reference trajectory of the robot (which is generated using 
human trajectory forecasts computed through the inten-
tion estimation algorithm) are considered. The controller is 
shown to be asymptotically stable under disturbances and 
uncertainties. A robot with an understanding of human 
intent is more equipped to act to improve the safety of joint 
tasks. An experiment is completed that computes the inten-
tion of a person performing a collaborative task of moving 
an object with a robot. To this end, a safe reference trajec-
tory is generated for the robot, and an adaptive controller is 
designed to track the estimated safe reference trajectory.

There are many broader challenges in human-in-the-
loop robot control from the perspectives of both estimation 
and control. The major challenges include the development 
of fundamental theoretical guarantees and limits on long-
term intention estimation, using predictive forecasting 
methodologies for learning models of humans and/or 
robots, and the fusion of multiple sensing modalities (such 
as vision, ultrasound, and lidar in the context of autono-
mous vehicles and/or physiological signals in the context 
of manufacturing applications). Incorporating human 
trust, workloads [98]–[102], attention allocation [103], and 
cognitive factors [104] in the HR collaboration brings many 
potential avenues for research. Including human ergo-
nomic preferences in CPHSs also has great potential to 
make the HRI more comfortable for humans [105], [106].

Some recent trends in control and decision making in HR 
collaborative systems are found in [107]. For the ML-based 
intention estimation technique of applying the approximate 
EM algorithm, various approximations for the E step can 
be considered to improve the performance of the estimator 
when the process and sensor noise characteristics are non-
Gaussian. Integrating information provided by intention 
inference algorithms into safe control methodologies that 
use CBF formulation and address the uncertainty in esti-
mation is another important area that requires further 
investigation. In addition to safety confirmation, there are 
temporal properties that need verification in the HRC set-
ting, such as eventuality, avoidance, reachability (a prob-
lem related to the safety property), and the composition of 
these properties. Developing methods for corroborating 
these properties in the HRC context is also important.

Compensating for time delays during the communica-
tion of information between humans and robots brings 
many challenges, specifically in the context of networks of 
human and robot agents [108]. HRC in a virtual reality set-
ting also presents many obstacles from an estimation and 
control perspective. For example, in a rehabilitation appli-
cation, a human who is undergoing walking or biking 
rehabilitation can benefit from interactions with a virtual 
environment. The interaction with the virtual setting can 
provide important feedback to the human user via the 
robot he or she is interacting with.

The remainder of the article is organized as follows. 
First, a human intent estimation method based on ML 

estimation using an approximate EM algorithm is pre-
sented. Then, another intention approximation method 
based on a MAP estimator that employs an IMM filter (with 
priors computed using the human gaze map) is described. 
A human-in-the-loop control strategy that uses CBFs to 
compute a safe reference trajectory for a robot to follow is 
designed, and an adaptive robot control is developed for a 
robot manipulator to track a safe desired trajectory during 
a collaborative task. Simulations and experiments are con-
ducted to validate the performance of the proposed inten-
tion estimation and control results. Note that, in the 
subsequent development, the dependency of variables on 
time is dropped for the compactness of notation unless it is 
necessary for clarity.

HUMAN-ACTION INTENTION ESTIMATION SCHEME

Intention Estimation as a Machine 
Learning Estimation Problem
In this section, the human goal-reaching intention is mod-
eled as a parameter of the nonlinear dynamics. The motion 
of a human is modeled as a nonlinear differential equation 
approximated as an NN. An approximate EM algorithm is 
designed to estimate the reaching intention of the human’s 
action (see Figure 2). To facilitate the discussion, a problem 
scenario is first described.

Problem Scenario
Consider a 3D workspace with a human performing tasks, 
such as picking up objects placed on a table or a shelf or 
walking toward certain locations in the area. The human 
subject reaches out to different objects placed on a table, and 
a robot watches the person through a 3D camera sensor. The 
problem of inferring the human hand’s reaching goal loca-
tion is addressed. Since the human motion is highly nonlin-
ear and uncertain, an NN approximation of the nonlinear 
function of the dynamic system is used to model the move-
ment. The NN is trained using a data set containing skeletal 
tracking of a human reaching for predefined target locations 
in a given workspace, observed using an RGB-D camera. 
When a set of new measurements becomes available, the 
trained NN is employed to estimate the reaching goal inten-
tion (the goal location in 3D) via an approximate EM algo-
rithm. An online NN model weight learning method is also 
developed through an identifier-based algorithm to adapt to 
the variations of motions in different human subjects.

Human Motion Dynamic Model and Measurement Model
The dynamics of human arm motion are modeled using a 
continuous nonlinear dynamic model of joint positions, 
velocities as states, and intention parameters represented as 
the reaching goal location of the motion. The human inten-
tion is denoted by G,g !  where G , , ,g g gn1 2 f= " , and 
g Ri

3!  represents a 3D location of an object on a table. The 
true intention g is one of the goal locations ,sgil  which can be 
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finite (represented by a discrete variable) or very large (rep-
resented by a continuous variable). The state ( )x t R24!  rep-
resents the positions and velocities of four points on the arm 
(shoulder, elbow, wrist, and palm) that describe the motion 
of the arm in the robot-reference frame, and ( )z t R12!  
denotes the measurement obtained from the RGB-D camera 
sensor data. The modeling of g as a continuous variable 
would be suitable in scenarios where it is not possible to 
obtain all possible object/goal locations.

State Transition Model
The state transition model is described by the following 
equation:

	 ( ) ( ( ), ) ( ),x t f x t g tc ~= +)o � (1)

where N( ) ,t Q0 Rc
24+ !~ ^ h  is a zero-mean Gaussian random 

process with a covariance matrix .Q Rc
24 24! #  Let S  be a 

compact, simply connected set of .R R24 3#  Here, ( ( ), ) :gf x tc
)  

S R24"  is a Lipschitz continuous function. Since an explicit 
form of a nonlinear function ( ( ), )gf x tc

)  for the human arm 
motion is not known, ( ( ), )gf x tc

)  is approximated using a feed-
forward NN. There exist weights and biases such that the func-
tion ( ( ), )gf x tc

)  can be represented by a three-layered NN as

	 ( ( ), ) ( ( )) ( ( )),gf x t W U s t s tc
T Tv e= +) � (2)

where ( ) [[ ( ), ], ]s t x t g 1 RT T T 28!=  is the input vector to the 
NN; U R n28 h! #  and W R( )n 1 24h! #+  are the bounded constant 
ideal weight matrices, that is, W F w# vr  and ;U F u# vr  

( ( ))U s t RT n 1h!v +  is an activation function that can be repre-
sented by a vector sigmoid function, an RBF, or a rectilinear 
unit; ( )U s tT

i^ h  is the ith element of the vector ( ) ;U s tT^ h  
( ( ))s t R24!e  is the function reconstruction error; and n Zh !

+  
is the number of neurons in the hidden layer of the NN.

Measurement Model
The measurements of human arm joint positions are gath-
ered by using an RGB-D camera sensor. The measurements 
are obtained in the camera’s reference frame. Let ( )p tc = 

( ), ( ), ( )x t y t z tc c c T^ h  be a point in the camera reference frame 
and ( ) ( ), ( ), ( )p t x t y t z tr r r r T= ^ h  be a point in the robot-refer-
ence frame. The points ( )p tc  and ( )p tr  are related by

	 ,p R p Tc
r
c r

r
c= + � (3)

where ( )R 3SOr
c !  and T Rr

c 3!  are the rotation matrix and 
the translation vector, respectively, between the robot-ref-
erence frame and the camera reference frame. The camera 
sensor measures the 3D locations of the skeleton’s joints.

The measurement model is given by

	 ( ) ( ( )) ( ),y t h x t ty= + � (4)

where ( )y t R12!  is the position of the skeletal joints of the 
arm in the camera reference frame, ( ( )) ( ) ,h x t Hx t b= +  

, , , ,b T T T Tr
c T

r
c T

r
c T

r
c T T

= 66 6 6 6@ @ @ @ @  , , , ,H R R R Rblkdiag r
c

r
c

r
c

r
c= 6 " ,  

,0 R12 12
12 24!#
#@  and N( ) ,t 0 Rz

12+ !y R^ h  is zero-mean 
Gaussian noise with a covariance matrix .Rz

12 12!R #  The 
measurement noise ( )ty  is assumed to be independent of 
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FIGURE 2 A block diagram of the approximate expectation-maximization (EM)-based intention estimation algorithm with gaze-based 
approximates that are used for initializing the M step of the EM. The gaze estimator block uses red-green-blue (RGB) images along with 
skeletal data to estimate the gaze map of a person, which determines the most probable objects that the person is looking at. The gaze 
map is applied to provide an initial estimate of the parameter for the EM algorithm. CNN: convolutional neural network; EKF: extended 
Kalman filter; ANN: artificial neural network. 
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the process noise ( )t~  defined in (1). The measurement 
model of the shifted measurement vector ( ) ( )z t y t b= -  is 
given by

	 ( ) ( ) ( ).z t Hx t v t= + � (5)

For the RGB-D camera, the Gaussian assumption of the 
measurement noise ( )ty  is a standard assumption in the lit-
erature [109], [110]. The measurement noise of ( )z tc  compo-
nents of ( )ty  is assumed to be normally distributed in [109], 
and the variance is modeled as a quadratic function ( )tz

2
cv = 

( ( )) ( ) ,c z t c z t cc c
1

2
2 3+ +  where ,c R1 !  ,c R2 !  .c R3 !  The 

other components of zR  can be calculated from the calibra-
tion parameters; individual pixel variances ( ),tu

2
cv  ( );tv

2
cv  

and depth variance ( ) .tz
2

cv

Neural Network Model Training
The training of the NN is completed using the data consist-
ing of the human arm’s joint locations, velocities, and accel-
erations along with the reaching goal locations. The 
baseline NN is trained through Bayesian regularization. 
The objective function applied to train the NN using Bayes-
ian regularization is given by ( , ) ,J U W K E K ED W= +a b

t t  
where ,U R n28 h! #t  W R( )n 1 24h! #+t  are the estimated NN 
weight matrices, ( ) ( )E y t a tD i ii 2

2< </= -  is the sum of 
squared errors, ( )y ti  is the target output, ( )a ti  is the net-
work’s output, E W UW 2

2
2
2< < < <= +t t  is the sum of the squares 

of the NN weights, and Ka  and Kb  are the parameters of 
regularization that can be used to change the emphasis 
between reducing the reconstruction errors and the model 
complexity, respectively.

Approximate Expectation-Maximization 
Algorithm for Estimating the Intention
An approximate EM algorithm is presented to estimate the 
intention parameter [56] using the state transition model 
learned through the NN. The intention inference algorithm 
on an offline trained model is presented first. The exten-
sion of the intention estimation algorithm with the online 
model learning is discussed subsequently. We start by dis-
cretizing the continuous model using a first-order Euler 
approximation. It is assumed that the states are sampled at 
a high rate so that the first-order Euler approximation is 
valid. The discretization of the state transition model 
defined in (1) yields

	 ( ) ( ( ), ) ( ) ,x t f x t g t t1 ~ d= - + � (6)

where ( ( ), ) ( ) ( ( ))f x t g x t W U s t t1 1 1T Tv d- = - + -  and td  is 
the sampling period. Let ( ), , ( )Z z t z t T0T f= = =" , be a col-
lective set of observations and ( ), , ( )X x t x t T0T f= = =" , be a 
collective representation of states from time t 0=  to .t T=  To 
infer the intention, the posterior probability of ZT  given the 
intention g is maximized using an ML criterion. The process 
noise of the discretized system in (6) is given by .Q t Qc

2d=

The log-likelihood function of the intention g is given by

	 ( ) ( | ),logl g p Z gT= � (7)

which can be obtained after marginalizing the joint dis-
tribution ( , | )p X Z gT T  across .XT  In general, analytically 
evaluating this integral is very difficult. In this article, an 
approximate EM algorithm is presented that uses state 
transition models trained using the NN. Given the fact that 

[ ( | )]| , ( ) ( | ),log logp Z g Z g t p Z gEX T T TT =t" ,  the log likelihood 
defined in (7) is decomposed in the following way:

	 ( | ) ( , ( )) ( , ( )),log p Z g g g t g g tQ HT = -t t � (8)

where ( , ( )) [ ( , | )]| , ( )logg g t p Z X g Z g tQ EX T T TT=t t" ,  is the 
expected value of the complete data log likelihood 
(given all the measurements and intentions), ( , ( ))g g tH =t  

( | , ) | , ( ) ,log p X Z g Z g tEX T T TT t6 @" ,  ( )EXT $  is the expectation 
operator, and ( )g tt  is the estimate of g at time t.

It can be shown using Jensen’s inequality that ( , ( ))g g tH #t  
( ( ), ( )) .g t g tH t t  Thus, to iteratively increase the log likeli-

hood, g must be chosen such that ( , ( )) ( ( ), ( )).g g t g t g tQ Q$t t t  
The E step involves the computation of the auxiliary func-
tion ( , ( )),g g tQ t  given the observations ZT  and the current 
estimate of the intention ( ) .g tt  The M step involves the com-
putation of the next intention estimate ( )g t 1+t  by finding 
the value of g that maximizes ( , ( )) .g g tQ t  The E step 
involves the evaluation of the expectation of the complete 
data log likelihood, which can be rewritten as

	 ( , ( )) ( ( ), ( ), )| , ( ) .g g t V V x t x t g Z g t1Q EX
t

T

T0
1

T= + -
=

t t) 3/ � (9)

If ( )tv  and ( )tw  are Gaussian, the computation of ( , ( ))g g tQ t  
can be simplified. The M step involves the optimization of 

( , ( ))g g tQ t  across g, as described by

	 ( ) ( , ( )) .argmaxg t g g t1 Q
g

+ =t t � (10)

This step can be completed in two different ways, 
namely, numerical optimization and direct evaluation. One 
way to maximize the Q function is to use the gradient EM 
(GradEM) algorithm for the M step, which, in turn, uses the 
first iteration of Newton’s method [56]. Since Newton’s 
method often converges quickly, the local convergence 
properties of the GradEM algorithm are identical to the EM 
algorithm. More details of the convergence properties of 
the GradEM algorithm can be found in [111]. This method 
involves optimizing the Q function across .R3  The update 
equation for ,gt  through the GradEM algorithm, is given by

	 H( ) ( ) ( ) ( ),g t g t1 Q Q1T+ = - -t t � (11)

where ( )g tt  is the estimate of g at the current time t of the 
optimization algorithm and H ( )Q  and ( )QT  are the Hes-
sian and the gradient of the Q function, respectively. Note 
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that numerical optimization methods need to run at every 
time step of the EM algorithm. For real-time implementa-
tions, the number of iterations for the optimization in (11) 
could be chosen based on computational capabilities. More 
details of the computation of the Hessian of the Q function 
and the expression for the gradient of the Q function can be 
found in [34]. General details of the EM algorithm are 
described in “Expectation-Maximization Algorithm.”

Another way to infer g is to evaluate the Q function for 
all possible instances of g sil  (the goal locations) in G  and 
obtain ( ),g t 1+t  as described by the following expression:

	 ( ) ( , ( )) .argmaxg t g g t1 Q
Gg

+ =
!

t t � (12)

This method involving direct evaluation of the Q function is 
feasible if all possible goal locations are known a priori and 
finite. This is not an unusual case in the context of human-
intention estimation in practical applications, such as manu-
facturing assembly, space robotics, and assisted construction. 
Image processing algorithms, such as the region convolu-
tional NN (R-CNN), faster R-CNN, mask R-CNN, and You 
Only Look Once, can be used to detect objects in the work-
space and extract the 3D locations using camera data.

Online Model Weight Update
In this section, an online learning algorithm is described 
and used to update the weights of the NN model. The 
online learning of the NN weights is important to make the 
inference framework robust to variations in starting arm 
positions and various motion trajectories taken by different 

people. The NN weights are iteratively updated as new 
data become available. A state identifier is developed that 
computes an estimate of the state derivative based on the 
current state estimates obtained from the extended 
Kalman filter (EKF) and the current NN weights. The 
identifier state error is computed from the state estimate 
and the measurement. The error in the state identifier is 
used to update the NN weights for the next time instance. 
Note that the state identifier can run at a higher sampling 
rate compared to the EM algorithm, which involves opti-
mizing the Q function that may have a slower conver-
gence rate. Hence, the state identifier is presented in the 
continuous form. The identifier uses RISE feedback [59] 
to ensure the asymptotic convergence of the state esti-
mates and their derivatives to the true values. The weight 
update equations are designed using Lyapunov-based 
stability analysis.

The state identifier is given by

	 ( ) ( ( ) ( )) ( ),x W t U t s t tT T
id v n= +to t t t � (13)

where ( ) ,U t R n28 h! #t  ( ) ,W t Rn 24h! #t  ( ) ( ), ( ) ,s t x t g t 1T T
id !=t t t66 @ @  

,R28  ( )g t R3!t  is the current estimate of g from the EM algo-
rithm, ( )x t R24

id !t  is the current identifier state, and ( )t R24!n  
is the RISE feedback term defined as ( ) ( ) ( ) ( )t kx t kx t0n o= - +u u  
[where ( ) ( ) ( )x t x t x tid= -u t  is the state identification error]. Here, 

( )t R24!o  is the Filippov generalized solution [58] to the dif-
ferential equation

	 ( ) ( ) ( ) ( ( )), ( ) ,t k x t x t 0 0sgn1o a c b o= + + =o u u � (14)

Expectation-Maximization Algorithm

The expectation-maximization (EM) algorithm is summa-

rized here [S1]. Consider a log-likelihood function

	 ,( ) ( )logl p ZT ;i i= � (S1)

where { , , , }Z z z zT T1 2 f=  denotes the given measurements. 

Let { , , , }X x x xT T1 2 f=  be a collection of states. The likelihood 

function in (S1) can be written as

	 ( ) ( , ) ,logl p X Z dXT T T;i i= # � (S2)

based on the joint probability density function ( , ).p X ZT T ; i  The 

evaluation of the integral in (S2) is difficult. Hence, approxima-

tion is required. To avoid the integration of (S2), an EM algorithm 

can be utilized, where two main stages are involved: the E step 

and the M step. The algorithm is summarized in the following:

1)	 Choose an initial estimation ,S0 !it  where S  is a con-

strained parameter set.

2)	 For the E step, compute an auxiliary function ( , ),Q ii it  

which is the expected value of the complete data log like-

lihood with respect to the random variable ,XN  given the 

observed data YN  and the estimate .iit  The ( , )Q ii it  is 

given by

	 , , , .logQ p X Z YEi X T T T iNi i i i=t t^ ^h h6 @" , � (S3)

3)	 For the M step, set ( , ).argmaxQ ii 1
S

i i i=
!i

+
t t

4)	 Repeat steps 2 and 3 until convergence.

The basic idea of the EM algorithm is to decompose the 

log-likelihood function
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(S4)

Using the Jensen inequality, ( , ) ( , ).H Hi i i#i i i i  Hence, i  is 

chosen such that ( , ) ( , ).Q Qi i i$i i i i  Then, from (S4), the 

log-likelihood function ( ) [ ( )]logl p ZT ;i i=  can be maximized.
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where ,k  ,a  ,c  and R1 !b +  are positive constant control 
gains and sgn( )$  denotes a vector signum function.

The weight update equations are given by

	

( ) ( ) ( ), ( )),

( ) ( ) ( ) ( )),

( ) ( ) ( ) ( )),

W t t U x t x t

U x t x t W t t

U g t x t W t t

proj(

proj (

proj (

( )

( )

( )

w x t
T T

x t u
T T

g t u
T T

id
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g

v

v

v

C

C

C

=

=

=

l

l

l

to t t to u

to to u t t

to to u t t

�

(15)

where ( )proj $  is a projection operator defined in [112]; U ( )x t
t  

and U ( )g t
t  are the submatrices of ( )U tt  formed by taking the 

rows corresponding to ( )x tidt  ( ),g tt  respectively; ( )tvlt  is the 
first-order derivative of the sigmoid function with respect to 
its input ( );U s tTt t  and ,wC  ,uxC  and ugC  are constant weighting 
matrices of appropriate dimensions. In the online learning 
algorithm, ( )g tt  from the EM algorithm is used. Hence, for the 
online learning step, ( )g tt  is assumed to be a known signal. 
The derivative of the intention estimate ( )g tto  is computed 
through the finite difference method. It can be shown using 
Lyapunov analysis that the identifier defined in (13) and the 
update equations defined in (15) are asymptotically stable 
and that the state identification error converges to zero.

Gaze Map Computation
This section briefly describes the CNN introduced in [113], 
which is applied to extract gaze information from an RGB 
image. To this end, a deep CNN architecture is employed. 
The input (features) to the CNN is a D Dw h#  RGB image of 
the subject looking at an object and the relative position of 
the subject’s head in that image. The output is the gaze map 
G  of size D Dw h#  containing the probabilities of each pixel 
is the gaze point. 

Data
The data set used for training the CNN model, as described 
in [113], is created by concatenating images from six different 
sources: 1548 images from Scene Understanding; 33,790 
images from Microsoft Common Objects in Context; 9135 
images from Actions40; 7791 images from Pattern Analysis, 
Statistical Modeling, and Computational Learning; 508 
images from the ImageNet detection challenge; and 198,097 
images from the Places data set.

Implementation of Convolutional Neural Network
The five-layered CNN shown in Figure 2 is implemented 
using Caffe library. Images of size 224 224 3# #  are used 
for training the CNN. These input images are filtered by 96 
convolution kernels of size 11 11 3# #  and fed into the first 
convolution layer, of size .55 55 96# #  The output of the 
first layer is filtered with 256 convolution kernels of size 
5 5 48# #  and fed to the second convolution layer. The sub-
sequent three layers are connected to one another without 
any pooling layers between them. The third convolution 
layer has 384 convolution kernels of size 3 3 256# #  con-
nected to the normalized and pooled outputs of the second 
convolution layer. The fourth convolution layer has 384 

convolution kernels of size ,3 3 192# #  and the fifth convo-
lution layer has 256 convolution kernels of size .3 3 192# #  
The remaining four layers used in the network are fully 
connected and of sizes 100, 400, 200, and 169. See [113] for a 
more in-depth description of the CNN framework.

The CNN is used to compute a gaze map, which is an 
image that assigns a probability value to each pixel to rep-
resent the likelihood of the pixel being looked at in the 
image, based on the head orientation data of a person. To 
compute the probability of gj  being the initial goal location 
for the optimization problem of the EM-based approach, 
the average probability ( )p 0jr  of the jth object in the scene is 
calculated as

	 G( ) ,( )/p i NP0
G

j j
i Pj

=
!

r ^ h/ � (16)

where G( )i  is the probability of the ith pixel being the gaze 
point, NPj is the number of pixels associated with the jth 
object, and GPj  is the set of all pixel locations associated 
with the jth object. Of all the objects in the scene, the one 
that corresponds to the highest average probability is 
chosen as the initial goal location for the optimization of 
the EM algorithm of the ANIE method.

Experimental Results for Expectation- 
Maximization-Based Intention Estimation
In this section, two experiments are presented using real 
data obtained from a Kinect sensor tracking a human’s 
movements. In both experiments, the reaching motion data 
harnessed for training and testing are collected from dif-
ferent human subjects.

Neural Network Training
The starting positions of the human arm and the possible 
goal locations of the test trajectories are different. In the 
training phase, some of the trajectories involved reaching 
for objects that were randomly placed close to each other in 
a cluttered manner, and some of the recorded arm motions 
consisted of the subject initially moving his or her hand 
close to an object and finally reaching another item. Each 
trajectory contained roughly 40–60 frames of skeletal data. 
A set of eight trajectories is used for training an NN. The 
raw position measurements obtained from the RGB-D 
camera sensor are processed using a KF, such as the one in 
[114], to obtain the position and velocity estimates. The 
number of neurons in the hidden layer is empirically 
chosen to be 50.

Neural Network Testing
Once the NN is trained, the test data from a different subject 
are used as measurements to infer the underlying inten-
tions of the reaching motion. During the inference, the NN 
weights are learned online to adapt to the motion performed 
by the test subject. It should be noted that the total number 
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of frames for each reaching motion is not fixed, and the 
intended object is reached at varying frame numbers. The Q 
function is evaluated for all the possible intentions to find 
the one that leads to the maximum Q value (the direct eval-
uation method). The initial mean of the state ( )0n  is assumed 
to be a zero vector. The initial state covariance ( ),P 0EM  the 
process noise covariance Q, and the measurement noise 
covariance zR  are selected to be . ,I0 2 24 24#  . ,I0 1 24 24#  and 

. ,I0 2 24 24#  respectively, where I denotes the identity matrix. 
The gains for the online learning algorithm defined in (13) 
and (15) are selected to be ,k 25=  ,5a =  ,25c =  and ,41b =  
and the adaptation gains are chosen to be . ,I0 75W 50 50C = #  

. ,I0 75U 24 24xC = #  and . .I0 75U 3 3gC = #  The state estimates are 
initialized to the same value as the first measurement z1. 
The sampling time for discretization is / .1 30 s

When the intention gt  is modeled as a continuous 
variable, the GradEM algorithm is used for evaluating the 
intention estimate. In Figure 3, the convergence of the 
estimated goal location to the true goal location is shown. 
The numerical optimization of the Q function is completed 
for five iterations at every time step. The state and intention 
estimates are initialized using two methods, namely, 
random selection and gaze-based selection. In the first set of 
experiments, the goal location is arbitrarily chosen from the 
eight possible ones, and the convergence of the estimated 
intention to the true intention is shown in Figure 3(a). In the 
second set, the approximated intention is initialized using 
gaze cues, and the convergence of the forecast intention to 
the true one is shown in Figure 3(b). It can be observed that 

the intention estimates ,gxt  ,gyt  and gzt  for the gaze-based 
initialization converge faster and show fewer transients, 
compared to the random initialization. When the intention 
gt  is modeled as a discrete variable, a direct evaluation of 
the Q function is performed to estimate the intention.

In the first method, one of the possible n goal locations is 
selected randomly as the initial estimate. In Figure 4, the inten-
tion estimate progression and trajectory evolution for such a 
randomly chosen estimate is shown. Error statistics with a 
large number of experiments are reported in the prior work in 
[34]. Due to the arbitrary assignment, the initial approximation 
can be any of the possible goal locations, including the ones far 
away from the true intention. It is observed that, in some cases, 
the EM algorithm requires more observations to converge to 
the true intention when the intention estimate is randomly ini-
tialized. To overcome this issue, a gaze-based selection of the 
goal location for optimizing the EM is tested in the second 
experiment, which provides better cues of the reaching goal 
location of the person. A dense gaze probability map is 
obtained using the method described in [53] and [113], and a 
probability is assigned to each of the possible goal locations by 
using the formula in (16). The goal location with the highest 
probability is chosen as the initial estimate ( ).g 0t

In Figure 5, the dense gaze probability map is presented 
along with the probabilities computed for each of the possi-
ble goal locations. The object with the maximum probability 
value, 0.2 in this case, is chosen as the initial intention esti-
mate. In Figure 6, the intention estimate progression is 
shown, along with the trajectory evolution for the initial 
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FIGURE 3 The estimated goal location using the adaptive neural intention estimator algorithm by numerically optimizing the Q function. 
(a) The convergence plot of the estimated intention (X, Y, and Z locations) when the initial estimate is randomly chosen. (b) The conver-
gence plot of the estimated intention (X, Y, and Z locations) when the initial estimate for expectation-maximization optimization is chosen 
using gaze cues.
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intention estimate computed from the gaze map. For the case 
of the sequence in Figure 6, the goal location with the maxi-
mum gaze probability is the true goal location. As a result, 
the algorithm predicts the intention correctly throughout the 
sequence. In the case of the random initialization of the 
intention, the ML estimation is equivalent to the MAP 
approximation with a uniform prior.

The observations in previous experiments that the ML 
method gives a faster convergence when initialized with 
gaze cues compared to the random initialization could be a 

coincidence. If a human is looking toward the opposite side 
of the direction of the arm motion, the gaze-based goal ini-
tialization will not be very useful. This may lead to a bad 
initialization for the goal location of the EM algorithm. If 
the initialization of the goal location is bad, the EM algo-
rithm may require more measurements before it correctly 
converges to the true goal location because EM is a ML esti-
mation method. As demonstrated in Figure 3, the EM algo-
rithm requires observations of up to 0.6 s to correctly 
predict the goal location for a 1.5-s sequence.

t = 0 s t = 0.3 s t = 0.6 s

t = 0.9 s t = 1.2 s t = 1.5 s

FIGURE 4 An image sequence showing the online inference of intention and the evolution of the human hand (wrist) trajectory (shown in 
green) through an approximate expectation-maximization algorithm with online model learning. The initial estimate of the reaching goal 
intention is randomly chosen from the finite number of objects available on the table. 
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FIGURE 5 (a) Goal location probabilities computed from the gaze map. The numbers shown inside the labels represent the probability of an 
object being reached by the person, based on the person’s initial head orientation. (b) A dense gaze map showing the gaze probability 
associated with each pixel. 
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Intention Estimation as a  
Multiple-Model Estimation Problem
In this section, a MAP estimation of the human goal-reaching 
intention is computed using a multiple-model estimation 
problem. Since the human reaching motion is generated by 
an inherent stable motion strategy, each movement is 
modeled as a continuous DS whose solutions converge to 
the goal location. To ensure that the models reach the goal 
location, the dynamics that are approximated through NNs 
are trained subject to convergence to the goal location con-
straints. The intention estimation strategy is to select the 
correct model based on the currently observed motion tra-
jectory. A block diagram of the multiple-model-based 
intention estimation methodology is given in Figure 7. 
More details of the algorithm can also be found in [53].

Human Motion Dynamic Model
In this section, a method for learning the nonlinear dynamics 
of the human arm-reaching motion is presented. Consider a 
state variable ( )x t Rn!  and a set of ND  demonstrations 
Di i

N
1
D

=" ,  representing reaching motions to various goal loca-
tions. Each demonstration would consist of the trajectories 
of the state ( )x t t

t T
0=
=" ,  and the trajectories of the state derivative 

( )tx t
t T

0=
=o" ,  from time t 0=  to .t T=  All state trajectories of the 

demonstrations are translated such that they converge to 
the origin. Let the translated demonstrations be solutions 
to the underlying DS governed by the first-order differen-
tial equation

	 ( ( )),x f x te=o � (17)

where ( ( ))f x te  is a Lipschitz continuous function. Since all 
the trajectories of the translated demonstrations converge 
to the origin, the system defined in (17) could be seen as 
a globally contracting one. The nonlinear function ( ( ))f x te  
is approximated by an NN similar to the one in (2) with-
out the intention variable g. Note that only one NN is 
used to represent the dynamics of reaching motion trajec-
tories that converge to the origin. Arm motion trajectories 
pertaining to different goal locations can be obtained by 
corresponding linear translations of the solutions to the 
DS in (1).

Learning Contracting Nonlinear Dynamics 
of Human Reaching Motion
To learn the NN weights from the sample reaching motion 
data, the following NN weight training algorithm is used. 
The weights are trained such that the states of the dynamics 
converge to a given reaching goal location. To achieve this, a 
constrained optimization problem is solved subject to goal 
reaching terminal constraints enforced using contraction 
analysis of nonlinear dynamics. The following optimiza-
tion problem is set up to learn the weights of the NN:

	 { , } argminW U E E
,W U

D Wa b= +t t " ,� (18)

	 s ,ubject to x
f

M M x
f

M M 0
e

T
e

2

2

2

2
' (c+ - � (19)

where ( ) ( ) ( ) ( ) , ( )[ ] [ ]E y t a t y t a t y t RD i
D

i i
T

i i i
n

1 !R= - -=  and 
( )a t Ri

n!  represent the target and the network’s output of 
the ith demonstration, EW  is the sum of the squares of the 

t = 0 s t = 0.3 s t = 0.6 s

t = 0.9 s t = 1.2 s t = 1.5 s

FIGURE 6 An image sequence showing the online inference of a person’s reaching intention and the evolution of the human hand (wrist) 
trajectory for an initial intention chosen using the gaze map. The gaze cue aids in narrowing the human’s reaching motion to the object 
being selected. 
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FIGURE 7 A block diagram of the multiple-model-based intention estimation algorithm with gaze priors. The gaze estimator block uses 
red-green-blue (RGB) images along with the head position to estimate the gaze map of a person, which determines the most probable 
objects that the person is looking at. The information from the gaze map is used to compute the prior model probability for the interact-
ing multiple-model (IMM) algorithm. CNN: convolutional neural network; ANN: artificial neural network; EKF: extended Kalman filter. 

NN weights, , R!a b  are scalar parameters of regulariza-
tion, R!c  is a strictly positive constant, and M Rn n! #  
represents a constant positive symmetric matrix. The 
details of the computation of the Jacobian ( ( ))/f x t xe2 2  for 
the NN approximation of ( ( ))f x te  can be found in [62].

Multiple-Model Estimation Algorithm 
for Intention Estimation
Based on multiple dynamic NN models that reach different 
goal locations, an IMM algorithm is developed that selects 
the most probable model, which is a representation of the 
current trajectory of a human’s reaching motion observed 
through sensor data. The IMM estimator is first described, 
and the computation of priors using gaze-based cues is 
subsequently explained.

Interacting Multiple-Model Estimator
Given the trained network and a trajectory of the reaching 
hand, the problem involves inferring the goal location in 
advance. Let a fixed set of candidate goal locations that the 
human can reach be { , , , }..G g g gN1 2 gf=  The NN weights 
learned from human demonstrations are used to represent 
human motion. For each goal location ,gj  the state vector 
and the corresponding dynamics are defined as ( )x tj = 
[[ ( ) ] , ( )] ,x t g x tj

T T T
pos vel-  and ( ) ( ( )).x t f x tj

e
j=o  Similarly, for a 

fixed set of Ng  goal locations, a set of Ng  dynamic systems 
is formed. The discretized versions of these systems are

	 ,x t x t f x t t t t1j j
e

j
e
j

d ~ d+ = + +^ ^ ^ ^^h h h hh � (20)

where , , ,j N1 gf=  td  is the sampling period, and ( )te
j +~  

( ), Q0 RN e
j n2!  is a zero-mean Gaussian random process 

with a covariance matrix .Q Re
j n n2 2! #  For this section, con-

sider ;n 3=  that is, only the last joint of the arm’s skeleton 

is tracked with the , ,X Ye e  and Ze  positions. The measure-
ment model is

	 ( ) ( ( )) ( ), , , , ,z t h x t v t j N1 2e e
j

e
j

gf= + = � (21)

where ( )z te  is the measurement vector, ( ) ( , )v t R0Ne e+  
is a zero-mean GP with covariance ,Re  and 

( ( )) ( )th x t x
1
0
0

0
0
0

0
1
0

0
0
0

0
0
1

0
0
0

e
j j= > H  

is the measurement function.
Let , , .,M M MN1 2 gf  represent the Ng  models defined in 

(20) and (21) for the set of candidate goal locations G. The 
posterior probability of model j being correct is denoted by 

( ).P g Z :j t1;  The expression ( )P g Z :j t1;  indicates the posterior 
probability of each gj  being the correct goal location, given 
a set of measurements [ ( ), ( ), , ( )].Z z z z t1 2:t e e e1 f=  Note that 

( ) ( )P g Z P M Z: :j t j t1 1; ;=  since the models and goal locations 
have a one-to-one correspondence. Hence, to obtain the 
posterior probabilities ( ), , .., ,P g Z j N1:j t g1; =  the posterior 
probabilities of the models ( ), , ..,P M Z j N1:j t g1; =  are com-
puted. The posterior probability ( )P M Z :j t1;  is calculated 
using the Bayes’ formula as ( ) ( ( ), )P M Z P M z t Z: :j t j t1 1 1; ;= =-

( ( ) , ) ( ( : ))/ ( ( ) , )p z t Z M P M Z t p z t Z M1 1: :t j j i
N

t i1 1 1 1 1 #; ; ;R-- = -

( ( : ),P M Z t1 1i ; + -  where ( ( ) , )p z t Z M:t j1 1; -  is the likeli-
hood function of mode j at time t and ( )P M Z :j t1 1; -  is the 
prior probability of Mj  being correct. In the IMM framework 
with Ng  models, the likelihood function ( ( ) , )p z t Z M:t j1 1; -  
of mode j at time t is ( ) ( ( ) , ) ( ( ))t p z t Z M p v t:j t j e

j
1 1;K = = =-  

( ( ) ( ); ; ).z t z t t S1 0N e e
j

e
j;- -t  The innovation ( ) ( )z t z t t 1j e e

j ;o = - -t  
and its covariance Sj  are computed from the mode-matched 
filter corresponding to mode j.

The G-MMIE algorithm uses EKFs matched to each 
mode. Other filters based on the state-dependent coefficient 
form parameterization of nonlinear systems [115] can also 
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be used for each individual filter. Each iteration of the IMM 
filter for intention inference is divided into four main steps: 
the interaction/mixing stage, model-matched filtering, the 
model probability update, and model switch detection. 
More details about the static IMM filter can be found in [64]. 
Details specific to the multiple-model filter in the context of 
gaze-based intention estimation can be reviewed in [53].

In many real-world applications, a small number of 
models may not be sufficient to describe all the modes. 
When the number of models is large, the performance of 
the IMM filter can degrade, and the computational burden 
increases. A VS-IMM filter can be used in such cases [65]. 
A limiting case of the VS-IMM when the mode space is con-
tinuous is presented in [66]. In certain HRC applications, a 
significant number of models is required to represent the 
application context.

Computation of Prior Distribution the Using Gaze 
Map for the Interacting Multiple-Model Filter
Using the gaze-based prior computation procedure and the 
average prior probability ( )p 0jr  computed through (16), the 
probability of each of the Ng  candidate locations being the 
goal site is ( ) ( )/ ( ),p p0 0 0j j j

N
j1

g
n R= =r r  where ( )0jn  is the prior 

probability of gj  being the goal area for the IMM filter and 
gj  refers to the positioning of the jth object.

Experimental Results for  
Multiple-Model-Based Intention Estimation
To validate the multiple-model-based intention estimation 
algorithm, a set of 10 demonstrations collected from a 

subject is used for training the NN under contraction anal-
ysis constraints. For training the NN, each demonstration 
is labeled based on the ground truth goal location. Note 
that the ground truth labeling is done only for the training 
data. All data are collected by a Microsoft Kinect for Win-
dows. The joint position data obtained from the subjects 
are preprocessed to obtain the velocity and acceleration 
estimates using a KF (see [114] for details). In all the experi-
ments, the position and velocity of the hand in the 3D Car-
tesian space are considered to be the elements of the state 
vector ( ) ,x t R6!  and the number of possible goal locations 

.N 8g =

An IMM filter for computing the intention estimate is 
implemented using the following parameters. The initial 
state estimate covariance ( ), , , .., ,P j N0 1 2e

j
g=t  the process 

noise covariance , , , .., ,Q j N1 2e
j

g=  and the measurement 
noise covariance Re  for the EKF of the IMM filter are 
selected to be . , . ,I I0 2 0 16 6 6 6# #  and . ,I0 2 6 6#  respectively. The 
state estimates , , , ,..x j N1 2j

g=t  are initialized using the 
first two measurements ( )z 1e  and ( )z 2e  (a finite difference 
method is used for the velocity initialization). The model 
transition matrix for the IMM is chosen to be an 8 × 8 matrix 

ijP  with diagonal elements of 0.79 and off-diagonal ele-
ments of 0.03. For computing the IMM priors, a uniform 
distribution and gaze-based cues is applied.

In the first experiment, a uniform distribution is used as a 
prior, which corresponds to all possible goal locations having 
an equal probability of being the true intention. In Figure 8, 
the intention estimate is displayed along with the trajectory 
evolution for the uniform prior. The initial goal location is set 

t = 0 s t = 0.3 s t = 0.6 s

t = 0.9 s t = 1.2 s t = 1.5 s

FIGURE 8 An image sequence showing the online inference of intention and the evolution of the human hand trajectory for a uniform prior 
distribution. 
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to object 5, and, after 0.3 s, the predicted goal location matches 
the true intention. In the second experiment, the prior distri-
bution is computed from the dense gaze map, as shown in 
Figure 5, using (16). The gaze-based prior assigns a higher 
prior probability to the goal locations where the human sub-
ject is likely to be looking. In Figure 9, the intention estimate 
and trajectory evolution for a prior distribution computed by 
using a dense gaze map are presented. The goal location with 
the highest prior probability is the true intention. Gaze-based 
prior computation assigns a higher probability value to the 
true intention, which results in a better prediction with fewer 
observations of the human hand trajectory. The interested 
reader is referred to the prior work in [53], where the error 
statistics of a large number of experiments are reported.

SAFE ROBOT CONTROLLER BASED ON  
HUMAN-INTENTION INFERENCE
This section describes robot control design that takes into 
consideration the human trajectory generated by the intention 
estimators to produce motion that is safe around the person. 
First, a robot’s desired trajectory generation algorithm is pre-
sented to determine the desired trajectory based on the 
human’s predicted course from the intention estimator. A BF 
formulation is then used to modify the robot’s desired trajec-
tories, which cross the boundary of the safety ellipsoid 
drawn around the human. In a subsequent section, a torque 
controller that follows the robot’s desired trajectory is dis-
cussed. Note that the dynamics in continuous time are used 
for the math development in this section because the con-
troller sampling rate is typically much higher compared to 

the sampling rate of the data obtained from the sensors used 
for the intention estimation.

Problem Scenario
An object-carrying task is used as a test case, where a person 
is holding one side of an object and the robot is holding the 
other side. While carrying the object, the robot’s end effec-
tor trajectories may cross the safety ellipsoid around the 
human, which is when the CBF is used to modify the 
robot’s desired movements. An example scenario of the 
task is in Figure 10.

t = 0 s t = 0.3 s t = 0.6 s

t = 0.9 s t = 1.2 s t = 1.5 s

FIGURE 9 An image sequence showing the online inference of intention and the evolution of the human hand trajectory for a prior distri-
bution computed using the gaze map. 

FIGURE 10 An example scenario showing a human and a robot 
working closely together to carry an object. The gray sphere 
around the human operator corresponds to the region the robot 
should not enter during the task execution. The magenta (dashed) 
and green (solid) lines show the desired motion trajectory of the 
object-carrying task. The stars and circles represent the initial and 
target locations of the motion, respectively. 
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Generation of the Robot’s Desired Trajectories 
for the Human–Robot Task
A method is presented that generates the desired robot 
trajectories as a function of the human’s inferred move-
ment. If the robot’s desired trajectory enters the prescribed 
safety ellipsoid around the human, then a BF-based for-
mulation is used to modify the robot’s movement such 
that it always stays outside the danger area. In Figure 11, 
the details of the reference trajectory generation algo-
rithm are illustrated in the form of a block diagram. Let 

( )x t R3
Rd !  be the desired position state of the robot’s end 

effector and ( )x t RH
3!  be the human’s position trajectory 

generated by the intention estimation algorithm. The 
robot trajectory ( )x tRd  is

	 ,x t T x t A x t bH H H HRd _ = +^ ^ ^^h h hh � (22)

where (·)T  is a generic transformation between ( )x tH  and 
( ).x tRd  Specifically, an affine transformation with known 

task-specific parameters :A RH
3 3#  and b RH

3!  is used in 
this article. If the robot’s generated desired trajectory ( )x tRd  
enters an unsafe zone represented by an ellipsoid drawn 
around the human, then the robot’s preferred course is 
required to be modified such that the robot does not collide 
with the person.

To modify the robot’s desired trajectory, a dynamic model of 
( )x tRd  is formulated with a control input so that two main objec-

tives are satisfied: 1) the controller is able to modify ( )x tRd  such 
that ( )x tRd  does not enter the safety ellipsoid around the human, 
and 2) the modified ( )x tRd  still closely tracks the original desired 
trajectory ( ).x tRd  To achieve this, consider the robot’s desired 
end effector motion dynamics ( ) ( ( )),x t f x tRd Rn Rd=o  where 

:f R R3 3
Rn "  is a nonlinear continuous function that gov-

erns the robot’s end effector motion dynamics. Based on the 
estimates of the human trajectory intention ( )x tHt  and its 

time derivative ( )x tHto  [and using function approximation 
methods, such as the extreme learning machine (ELM)], 
the function ( ) ( ( ) ( ) )( )x t f x t T x tHRd Rn Rd= =to t tt  can be learned, 
where :f R R3 3

Rn "t  is an approximation of ( ).fRn $  See “Extreme 
Learning Machine” for more details of the ELM.

GMMs can also be used to approximate the nonlinear func-
tion ( )fRn $t  for capturing the uncertainty in the data. To ensure 
that the trajectories ( )x tRdt  generated by the nominal model 

( ( ))f x tRn Rdtt  avoid the working region of the human operator 
(represented by a 3D ellipsoid), a controller ( )u tr  is designed to 
provide modifications to ( )x tRdt  using CBFs and control Lyapu-
nov function (CLF) theory. To execute this, a robot’s modified 
desired end effector dynamics can be written as

	 ( ) ( ( )) ( ),x t f x t u tRd Rn Rd= +to t rt � (23)

where ( )u t R3!r  is a control input that is designed to avoid 
unsafe zones. In the next section, the design of ( )u tr  using 
CBFs and CLF theory is discussed.

Control Barrier Function Formulation
A CBF defines a forward invariant region such that solutions 
of the DS that start in that area remain there permanently. 
The choice of an invariant region is application specific as 
long as the CBF conditions specified in “Constructing Con-
trol Barrier and Control Lyapunov Functions” are valid 
choices. In this article, the CBF is used to avoid the obstacle 
region; that is, the robot trajectories that start outside the 
unsafe region permanently remain outside that zone. Ellipses, 
circles, and ellipsoids are commonly used shapes to repre-
sent obstacles and regions of operation where it is unsafe for 
a robot’s end effector to enter. The application uses a 3D ellip-
soid shape around a human as an unsafe zone for a robot to 
enter. The ellipsoidal BF is defined as a continuously differ-
entiable function :b RR3 "  given by

Human Trajectory
From Intention

Nominal Reference
Trajectory
Generation

Unsafe

Control With
Barrier +
Lyapunov
Functions

Control With
Lyapunov
Function

Robot
Reference
Trajectory

Safe

FIGURE 11 A block diagram of the reference trajectory generator for the robot, based on observed and inferred human action. The human 
movement approximation produced by intention estimator is fed into a reference trajectory generator block for the robot. If the robot-refer-
ence trajectory enters the unsafe zone around the human, then a control barrier function approach is used to modify the robot’s movement. 
Otherwise, a control Lyapunov function approach is used to generate a bounded and convergent reference trajectory for the robot.
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where ( ) [ ( ), ( ), ( )] , ,;x t x t x t x t x xT
g g1 2 3 1 2=  and x g3  are the 

coordinates of the center of gravity of the ellipse; and ,a1  ,a2  
and a3  are the semiaxes of an ellipsoid. Using the BF in (24), 
the CBF candidate is defined as ( ( )) / ( ( )),B x t b x t1=  which 
satisfies the properties given in “Constructing Control Bar-
rier and Control Lyapunov Functions.”

Control Lyapunov Function Formulation
The CLF is used to ensure that the desired trajectories of 
the robot remain stable and converge to a point in the 3D 
space where the object is being placed. Consider a qua-
dratic Lyapunov function candidate of the form ( ( ))V x tRd =t

/ ( ( ) ) ( ( ) ),x t x x t x1 2 T
Rd Rd Rd Rd- -) )t t  ( ) .x t XuRd6 !t  Using the time 

derivative of the CLF and (23),

	 ( ) ( ) ( ) ( ),V x x x f x u V xT
lRd Rd Rd Rn Rd Rd# c= - + -)o t t t r tt^ h � (25)

where Rl !c  is a positive constant.

Control Design Using Control Barrier Function 
and Control Lyapunov Function Constraints
Given the approximated nonlinear function ( ( )),f x tRn Rdtt  an 
online controller learning problem with safety and stabil-
ity constraints is now discussed. Two cases are considered: 
1) when the robot’s desired trajectories are not crossing the 

safety ellipsoid and 2) when the robot’s desired trajectories 
are crossing the safety ellipsoid.

Case 1
When the robot’s desired trajectories are not crossing the 
safety ellipsoid, then a controller that uses CLF constraints 
is synthesized. The controller with CLF constraints will 
ensure that the trajectories ( )x tRdt  generated by (23) remain 
stable with respect to the equilibrium point .xRd

)  To this 
end, the following quadratic program (QP) is solved to syn-
thesize the controller:

 

,

subject to ( ) ( ) ( )
( ) , ,

argminu u Pu p

x x u x x f x
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T T
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(26)

where R!d  is a positive constant added as a relaxation 
variable that ensures the solvability of the QP as penalized 
by p 0>  and P R3 3! #  is a positive definite weight matrix.

Case 2
When the robot’s desired trajectories are crossing the safety 
ellipsoid, then the optimal controller is synthesized using 
both CLF and CBF constraints. The CBF constraint will 
ensure that the trajectories ( )x tRdt  generated by (23) will not 
enter the unsafe ellipsoidal zone, and the CLF constraint 
will guarantee that the trajectories remain stable with 
respect to .xRd

)  The optimization problem subject to the CBF 
and CLF is

Extreme Learning Machine

T he extreme learning machine (ELM) is a learning algorithm 

that uses a least-squares approach to estimate the param-

eters of a single-layer neural network (SLNN). According to 

ELM theory [S2], from the function approximation perspective, 

the input weights and all the hidden node parameters are ran-

domly assigned. ELM theory claims that, unlike conventional 

learning methods, parameter tuning the input weights, slopes, 

and biases is not required in learning. Therefore, the choice of 

the ELM over traditional gradient-based algorithms for SLNN is 

because the learning speed of the ELM is faster and because 

the gradient-based methods may have issues, such as local 

minima and improper learning rates [S2].

Consider the following multilayer perceptron with nh  hidden 

nodes:

	 ( ) ( ( ), , , ) ,y t G x t U a b Wi
i

n

i i i i
T

h

$=/ � (S5)

where ( ) , ( )y t GRn
i $!  is a scalar, which denotes the ith hidden 

node activation function, whose range depends on the choice 

of the nonlinear function; U Ri
n!  is the input weight vector 

connecting the input layer to the ith hidden neuron; ,a b Ri i !  

are the slope and bias corresponding to the ith hidden neuron; 

and W Ri
T n!  is the output weight vector connecting the output 

layer to the ith hidden neuron. The ELM is created by randomly 

initializing the input weight matrix ,U Rn nh! #  the slopes (which 

are usually set to one) ,a Rnh!  and the biases .b Rnh!  The 

sigmoid function is typically chosen for the activation function.

Although the ELM algorithm is fast, random initialization 

may lead to saturated or constant neurons, which are not de-

sired while learning the model [S3]. To circumvent this prob-

lem, an intrinsic plasticity (IP) learning rule can be used. IP 

is an online learning method that optimizes the information 

transmission of a single neuron by adapting the slopes and 

biases such that the output of the activation function becomes 

exponentially distributed. Inspired by the IP method, a compu-

tationally efficient batch version of the method, called BIP, was 

introduced in [S3].
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where , ,0R l 2!d c  and 0B 2c  are positive constants.

Numerical Simulation Results
Given the position estimates of the human-demonstrated 
motion trajectory, the robot’s desired movement can be 
obtained from (23). However, the position trajectory gener-
ated from the affine function does not guarantee that the 
human workspace will be avoided. As shown in Figure 12, 
the robot’s desired trajectory (in solid green lines) intersects 
with the human’s workspace. An ellipsoid is used to 

represent the unsafe region for the robot’s end effector. In 
that area, the human completes his or her own tasks. Based 
on the robot’s desired end effector states (position and veloc-
ity), an ELM parameterization is employed to approximate 
the nonlinear function that governs the underlying dynam-
ics. A controller is synthesized by optimizing the objective 
function, subject to the constraints derived using the CBF 
and the CLF, to ensure the position trajectory generated from 
the learned model avoids the human workspace.

In Figure 12, the simulated results are shown in which the 
controller applies corrections to the trajectory generated by the 
model to avoid the human workspace while still reaching the 
target location. In Figure 13, an example is illustrated in which 
the robot’s desired end effector trajectory is far from the human 
workspace. Thus, the robot poses no harm to the human oper-
ator. Therefore, a CLF is used to learn a controller, which 
ensures that the robot’s end effector reaches the target location 
without interfering with the person’s workspace.

Constructing Control Barrier and Control Lyapunov Functions

BARRIER FUNCTION

C onsider a continuous nonlinear dynamical system (DS) of 

the form

	 ( ) ( ( )),x t f x t=o � (S6)

where :f RRn n"  is a locally Lipschitz-continuous nonlin-

ear function and ( )x t RS n! 3  is the state of the system. 

A set RS n!  is called (forward) invariant with respect to 

(S6) if, for any initial condition, ( ) : ( )x x t0 S0 !=  implies that 

( ) ,x t t RS 6! ! +  [S4]. Barrier functions (BFs) define a forward-

invariant safe region where the solutions of a DS remain per-

manently [S5], [S6].

CONSTRUCTING THE BARRIER FUNCTION

For a closed set ,RS n1  the interior and boundary are defined 

as

	 { : ( ) },x b x 0RS n! $= � (S7)

	 { : ( ) },x b x 0RS n2 != = � (S8)

	 ( ) { : ( ) },Int x b x 0RS n 2!= � (S9)

where ( ( )) :b x t R Rn "  is a continuously differentiable func-

tion. An example of ( ( ))b x t  is given in (24).

Definition 1 [S3, Def. 1]

Given the continuous system (S6), the closed set S  defined 

by (S7)–(S9), and the continuously differentiable function 

: ,b RRn "  a real-valued function : (Int )B RS "  that is differ-

entiable with respect to its argument is said to be a reciprocal 

BF if there exist class K  functions , ,1 2h h  and 3h  such that, for 

all (Int ),x S!

	 ( ( )) ( ) ( ( )) ,b x B x b x
1 1

1 2
# #

h h
� (S10)

	
( )

( ) ( ( )).x
B x

f x b x32
2

# h � (S11)

There are two popular candidates to construct the BFs ( ( ))B x t  

from an invariant set, namely, reciprocal BFs and zeroing 

BFs. Some candidate reciprocal BFs are the inverse type 

and the logarithmic type, given by ( ( )) 1 ( ( ( )))/B x t b x t=  and 

( ( )) log( ( ( )) (1 ( ( )))/ ,B x t b x t b x t=- +  respectively [S6]. Note 

that both candidates are unbounded on the set boundary 

( ( ))B x t " 3  as ( ) .x t S" 2

Conventionally, safety verification in the form of trajectory 

invariance with respect to a given closed set relies on the ex-

istence of a BF satisfying conditions on both the function itself 

and its time derivative along solution trajectories of the DS, 

namely ( )B x 0#o  [S5]. However, as noted in [S7], the existence 

of a BF is a sufficient condition to guarantee the safety prop-

erty to be verified. That is, the invariance verification of all sub-

levels of the closed set S  may not be required. Therefore, the 

authors of [S6] relaxed the condition to /B B# co  for reciprocal 

BFs, where c  is a positive constant. The modification enables 

only a single sublevel set to be invariant.

CONTROL BARRIER FUNCTIONS

BFs are an essential means to verify the invariance of a set. 

However, they cannot be used in a direct form to design a con-

troller [S6]. That is, to ensure that the set (Int )S  is forward in-

variant under the dynamics of the system (S6), a controller that 

guarantees the invariance of the set is required. Similar to how 

Lyapunov functions are extended to control Lyapunov func-

tions [S8], the concept of BFs can be extended to the case of 
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ADAPTIVE ROBOT CONTROLLER
In this section, an adaptive controller for the robot arm 
is designed that follows the preferred movement created 
by the desired trajectory generator block. First, a robot 
dynamic model represented by EL dynamics is discussed. 
An adaptive controller for the robot manipulator that 
tracks the desired trajectory is presented with a Lyapunov 
stability analysis.

Robot Dynamic Model
Consider the following robot manipulator dynamics (rep-
resented by EL dynamics) given by

	 ( ) ( , ) ( ) .M q q C q q q G q x+ + =p o o � (29)

In (29), ( ),q t  ( ),q to  and ( )q t Rd!p  denote the generalized 
states; ( )M q Rd d! #  represents a generalized inertia matrix; 

( , )C q q Rd d! #o  designates a generalized centripetal Coriolis 
matrix; ( )G q Rd!  indicates a generalized gravity vector; 

and ( )t Rd!x  signifies the generalized input control vector. 
It is well known that, for the robot manipulator dynamics 
in (29), the following properties hold:

»» Property 1: The matrix ( )M q  is positive definite, and 
,( )I M Iqmin max# #m m  where minm  and maxm  are positive 

constants.
»» Property 2: For any differentiable vector ( ) ,t Rn!p  the 
dynamics in (29) are linearly parameterizable as 

, , , ,( ) ( )( , ) ( )M q C q g q Y q qqp p p p H+ + =o o o o  where Rk!H  
is a set of robot-specific parameters and :Y R Rn n# # 
R R Rn n n k"# #  is a matrix of known functions of the 
generalized coordinates and their higher directives.

»» Property 3: The inertia and centripetal Coriolis matri-
ces satisfied the property ( ) ,M C2 0Tp p- =o  ( ) ;t Rn6 !p  
that is, ( )M C2-o  is a skew-symmetric matrix. See [112] 
and [116] for more details.

Let W( )x t RR
m! 1  be the robot’s end effector state and 

( )q t Q RJ
n! 1 R  be the joint angles of the robot. The 

control systems through the use of control BFs (CBFs). Given 

the DS in (S6), in cases where the solutions of a DS do not stay 

in an invariant set ,S  a CBF can be specified that will that as-

sure the solutions remain inside the invariant set.

CONSTRUCTING THE CONTROL BARRIER FUNCTION

Assume the following DS with an external control input:

	 ( ) ( ( )) ( ( )) ( ),x t f x t g x t u t= +o � (S12)

where f and g are locally Lipschitz, ( ) ,x t Rn!  and ( ) .u t Rm!  To 

find a suitable CBF such that the solution trajectories of the DS 

in (S12) avoid possible obstacles within the DS’s state space, 

the constraint on the system state x(t) is encoded in a smooth 

constraint function ( ( )).b x t  A value ( ( ))b x t 0$  indicates adher-

ence, whereas ( ( ))b x t 01  represents a violation. This means 

that the constraint function must be designed depending on the 

shape of the obstacle such that ( ( ))b x t 0=  describes the ob-

stacle’s boundary. The set of admissible states X0  is defined by

	

{ : ( ) },

{ : ( ) },

( ) { : ( ) }.Int

x b x

x b x

x b x

0

0

0

R

R

R

X

X

X

n

n

n

0

0

0

2

2

! $

!

!

=

= =

=

�

(S13)

A reciprocal CBF : (Int )B RX0 "  is a nonnegative function 

if there exist class K  functions , ,1 2a a  and 3a  such that, for all 

( ) (Int ),x t X0!

	 ( ( )) ( ) ( ( )) ,b x B x b x
1 1

1 2
# #

a a
� (S14)

	 ,( ) ( ) ( )inf B x B x u B x 01L L
u

f g 3
Rm

#a+ -
!

c m' 1 � (S15)

where ( ( ))B x tLf  is the Lie derivative ( ( )) / ( ( ))( )B x t x f x t2 2  along 

the vector field ( ( ))f x t  and ( ( ))B x tLg  is the Lie derivative 

( ( ( )) / ) ( ( ))B x t x g x t2 2  along the vector field ( ( )).g x t  Hence, for 

the system in (S12), any locally Lipschitz controller :u RX m
0 "  

that is selected from (S15) assures the closed set RX n
0 1  is 

forward invariant.

CONTROL LYAPUNOV FUNCTION

A continuous nonlinear DS of the form (S12) is said to be glob-

ally asymptotically stable at equilibrium x*  if there exists a re-

al-valued, continuously differentiable function ( ( )) :V x t RRn "  

(which is also known as the control Lyapunov function) that 

is differentiable with respect to its argument, and there exists 

a set of controls U Rm1r  and class K  functions , ,v v1 2a a  and 

v3a  such that, for all ( ) ( ),x t Int X0!  the following conditions are 

satisfied:

	 ( ) ( ) ( ),x V x xv v1 2; ; # # ; ;a a � (S16)

	 ,( ) ( ) ( ){ }inf V x V x u x 0L L
u U

f g v3 #; ;a+ +
!

r
r

� (S17)

where ( )V xLf  and ( )V xLg  are the Lie derivatives.
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forward and velocity kinematic relationships are given by 
( ) ( ( )),x t h q tFRR =  ( ) ( ( )) ( ),x t J q t q tR =o o  where :h R Rn m

FR "R  is 
the mapping between the joint space QJ  and the task 
space W  and ( ( )) :J q t R Rn m n" #  is the known Jacobian.

Controller Design
The desired trajectory ( )x t Rm

Rd !  of the robot end effector 
state is produced based on the robot’s desired trajectory 
generator block. To design the robot controller, consider the 
signals ( ),a t  ( ),tv  and ( )ts  for nonredundant robots given by 

( ) ,v J q x e1
Rd K= -- o^ h  ( ) ( ) ,J q x e J q x ea 1 1

Rd RdK K= - + -- -o o p o^ ^h h  
and ( ) ,( )s J q x e q1

Rd K= - + +- o o  where ( ) ( ( ) ( ))e t x t x tR Rd_ !-  
Rm  is the tracking error, ,v q s= -o  ,a v= o  and R Rm m#!K  
is a positive definite diagonal matrix. Also consider the fil-
tered error in the task space, ( ) ( ) ( ) .r t J q s t_  Using (29), ( )tr  
can be expressed as

	 .r x x x x e eR RRd RdK K=- + - + = +o o o^ h � (30)

The control input in (29) is designed to be

	 ,Y K s J K et
T

J
Tx H= - -t t t t � (31)

where , , ,Y Y q q v a=t o t t^ h is a regressor matrix; Ht  consists of 
estimates of the parameters M, C, and g, respectively; 
e x xR Rd= -t t  is the estimated tracking error; K R Rt

n n#! R R  
and K R RJ

m m#!  are diagonal matrices; ( ) ,v J q x e1
Rd K= --t ot t^ h  

( ) ( ) ;a J q x e J q x e1 1
Rd RdK K= - + -- -t o ot t pt ot^ ^h h  and ( ) (s J q x1

Rd= - +-t ot  
.)e qK +t o  The parameter update rule is

	 ,( )Y sproj T1H C= - -to t t � (32)

where Rk k!C #  is a positive definite matrix and ,( )proj $  is a 
standard projection operator, which ensures that the param-
eter estimates are bounded (see [117] for details).

Remark 1
The parameter estimation error ( ) ( ) ( )t t t_H H H-u t  is uniformly 
continuous since ( )tHt  evolves according to (32). Substituting 
(31) in (29) yields the closed-loop system as given by

	
.

Ms Cs K s Y J K e Y J K x

Ma Cv K s
t

T
J
T T

J
T

t

RdH H+ + =- - + -

- - +

o u u u u

u u u
�

(33)

More details of the signals in (33) can be found in [9].

Assumption 1
The signals ( ),x tRdu  ( ),x tRdou  and ( )x tRdpu  are uniformly contin-
uous, and ( ) ,x tRd< <u  ( ) ,x tRd< <ou  ( )x t 0Rd "< <pu  as .t "3

Remark 2
Based on Assumption 1 and formulas for ( ),v tu  ( ),a tu  ( )s tu  and 

( ),Y tu  it can be seen that ( ) , ( ) , ( ) , ( )v t a t s t Y t 0"< < < < < < < <u u u u  as 
.t "3

Stability Analysis
A Lyapunov stability theorem is provided for the closed-
loop system defined in (33).

Theorem 1
The closed-loop system in (33) is stable, and the tracking error 
is globally and uniformly bounded in the sense that 

2.5

2

1.5

1

0.5

z 
(m

)

1

0.5

0

–0.5 –0.6
–0.4

–0.2
0

0.2
0.4

0.6

x (m)
y (m)

Human Demonstrations
Desired Robot Trajectory
Reproduction With CBF and CLF
Violators
Starting Location
Target Location

FIGURE 12 Human-demonstrated motion trajectory is enclosed by an ellipsoid to represent the unsafe region for a robot’s end effector to 
enter. The robot’s desired end effector position trajectory is modified by a controller that avoids the ellipsoid zone while reaching the 
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,( )( ) expe tt 0 1 2"< < e e e- +  where ,0e  ,1e  R2 !e  denote posi-
tive bounding constants if the following conditions for the 
gains of the controller defined in (31) are satisfied: K 0t2  and 

.K 0J2  See [9] for the proof and more details. Extensions of 
the adaptive controller design for redundant manipulators 
can be found in [118]. The stability analysis can be extended 
to the modified controller, and the redundant manipulator 
can be shown to asymptotically track the desired trajectory.

Numerical Simulation Results
The results of the tracking controller (shown in Figures 14 
and 15) were generated using a simulation of Rethink 

Robotics’ seven-degrees-of-freedom Baxter Robot in the 
Gazebo simulation platform. The reference trajectories and 
their derivatives (which are obtained by observing the 
motion of a human hand and then modified according to 
the CBF and CLF constraints) are used as ( )x tRdt  and ( )x tRdot  
for the controller defined in (31). During execution, the true 
robot task space end effector positions ( )x tR  and velocities 

( )x tRo  are read from virtual sensors provided in Gazebo.

Experimental Results
A collaborative task involving a human and a robot moving 
a heavy object is designed for experimental evaluation. In 
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it, the robot must infer the motion intention of the human 
online and adjust its trajectory to coordinate with the 
human to move a rectangular box from a workbench to an 
elevated surface. While doing so, the robot must follow a 
trajectory that does not enter the human workspace to 
ensure the safety of the person. The human is assumed to 
move between two different dynamical models (one for 
moving the box parallel to the surface of the workbench 
and the other for lifting the object and placing it on the 
elevated surface). The experiment is demonstrated through 
a sequence of images, as shown in Figure 16.

Four demonstrations of the human hand motion train-
ing data for each movement are collected using Microsoft 
Kinect skeletal tracking to train two NN models (corre-
sponding to the two dynamical models) subject to con-
traction constraints. The single-layer NN model for the 
translational motion consists of 12 neurons, and the 
model for the vertical motion consists of 15 neurons. The 
trained NNs are then used as motion models for EKFs, 
which are incorporated into the IMM framework. A 
Microsoft Kinect sensor placed on top of Baxter’s head is 
employed for acquiring the human hand position data 
online during the experiment. The IMM estimator is used 

to approximate the 3D position of the human hand and 
the likelihood of each model being the true representa-
tion at each time instance.

A controller ( )u tr  is designed by the solving the optimi-
zation problem in (26)–(28), which generates the robot’s 
desired trajectory ( ) .x tRdt  The controller ( )u tr  ensures that 
the robot’s desired trajectory stays outside the human 
workspace, ensuring the safety of the person. The matrix H 
is chosen to be identity for the optimization. The adaptive 
tracking controller in (31) is used to monitor the safe tra-
jectory generated by solving the optimization problem. 
The experiments are completed with the Baxter research 
robot and the Baxter application programming interface 
along with the Robot Operating System. The gains chosen 
for the adaptive controller are , , . , , , ,K 27 30 37 5 0 0 0diagJ = " ,  

, , , . , , , . ,K 3 6 3 3 25 3 3 1 5diagt = " ,  and , , , , , .1 1 1 0 0 0diagK = " ,  
The orientation of the robot end effector was constant 
throughout the experiment. The results of the experi-
ment are summarized in Figure 17(a) and (b). The 
robot end effector trajectories converge and track the 
desired trajectories, as shown in Figure 17(a). The 
error between the actual and desired trajectories 
appears in Figure 17(b).
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FIGURE 16 Experimental results for collaboratively moving an object using a Baxter research robot and a person. 
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CONCLUSION
For assistive robots to integrate seamlessly into human 
environments, they should be able to understand the inten-
tions of human agents and adapt to those people’s motions. 
Many HRC tasks in advanced manufacturing operations 
require humans and robots to perform joint tasks, such as 
carrying heavy loads and large, flexible materials and com-
pleting welding operations, for which the robot can act as 
an assistant to learn people’s motion behaviors, based on 
RGB-D sensor data. A robot can then adapt its motions to 
complete a cooperative task. In this article, a survey of the 
topic was first provided by presenting existing literature in 
a tutorial manner, and approaches that focus and expand 
this article were discussed for inferring human motion tra-
jectories and estimating reaching goal intentions.

The first method is based on an ML estimation tech-
nique called approximate EM that uses online model learn-
ing to accommodate uncertainties in human motions. The 
second is based on a multiple-model estimator that switches 
between multiple nonlinear human motion models. Short 
tutorials on approximate EM and multiple-model estima-
tion methods were presented that use nonlinear models of 
human motion learned through NN function estimation 
from labeled sensor data. For the ML-based estimator, the 
optimizer is initialized using human gaze cues and random 
initialization. For the MAP-based estimator, a gaze-based 
prior is employed that is computed by analyzing RGB 
image data using a deep NN. The results were compared 
with the uniform prior.

A human-in-the-loop control strategy was discussed that 
uses the estimated human motion trajectory and intended 
reaching goal location to determine a safe robot-reference 
trajectory, which is tracked via an adaptive controller for the 
robot. For the desired trajectory generation, a CBF formulation 

is used to produce movements that are safe around humans. 
The desired motions are created with two objectives: 1) the 
robot end effector trajectories do not enter a safety region 
around a human, and 2) the robot end effector trajectories 
are able to synchronize with human motion as closely as 
possible. The adaptive controller converges to the desired 
trajectories produced by the generation block.

A case study of humans and robots carrying an object 
together was discussed. Future challenges, such as ensuring 
the safety of humans in the presence of actuator and sensor 
failures, can be a potential topic to explore, for example, via 
human supervision of automation to achieve resilient control 
[119]. Estimating intention by using sensors, such as ultrasound 
imaging, can be another avenue for potential research [120].
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