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Image Moment-Based Extended Object Tracking
for Complex Motions

Gang Yao, Ryan Saltus, and Ashwin Dani , Senior Member, IEEE

Abstract—A novel image moment-based model for shape
estimation and tracking of an extended target moving with
a complex trajectory is presented. The proposed extended
object tracking algorithm is based on multiple noisy measure-
ment points sampled from the target at each time step. The
shape of the object, approximated by an ellipse, is estimated
using a combination of image moments. Dynamic models of
image moments for constant velocity and coordinated turn
motions are mathematically derived. An unscented Kalman
filter - interacting multiple model (UKF-IMM) method is used to
track the object and estimate its shape. A likelihood function
based on average log-likelihood is derived for the IMM filter.
Simulation results of the proposed UKF-IMM algorithm with
the image moment-based models are presented that show the estimation of the shape of the object moving in a complex
trajectory. The intersection over union (IoU), and the root mean square errors (RMSEs) of the position and velocity of the
centroid of the ellipse are used as metrics. The comparison results of the proposed algorithm with a benchmark algorithm
from literature based on the IoU and RMSE metrics are presented.

Index Terms— Extended object tracking, shape estimation, dynamic models of image moments, log-likelihood for
filtering.

I. INTRODUCTION

OBJECT tracking can be defined as the problem of
estimating the trajectory of a moving object based on

the measurements from a particular sensor. In the context of
different applications and the particular characteristics of the
sensors, many tracking algorithms have been proposed [1]–[4].
Visual tracking algorithms are based on dense illuminance-
based measurements, which use the silhouette, color and
texture information to represent and track the target [5]–[10].
However, when measurements are sparse and only have the
position information, extended object tracking (EOT) algo-
rithms are used to solve this problem.

Extended object tracking is a very important and rapidly
developing area [11]–[14], with applications in robotics and
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autonomous driving [15]. EOT can also be used as an addi-
tional step to online structure from motion (SfM) [16], [17],
simultaneous localization and mapping (SLAM) [18], or for
robotic harvesting [19], [20] problems to estimate the shape of
the object from feature points. The classical point-based track-
ing methods only estimate the kinematic states of the target,
with the assumption that there is only one measurement point
from the target at each time step. With the increased resolution,
modern sensors such as phased array radars and laser range
finders are capable of giving more than one point measurement
from an observed target at a single time instance [15], [18],
[21]. Sensors such as 3D cameras, e.g., Microsoft Kinect cam-
era, give a collection of depth points as measurements along
with RGB images. The multiple measurements from a target
can be used to estimate and track not only the position and
velocity of the centroid but also its spatial extent. Combined
target tracking and shape estimation is commonly referred
to as an extended object tracking problem. Comprehensive
overviews of extended object tracking are shown in [11], [12].

A variety of geometric primitives are used to approximate
the shape or volume of extended objects, e.g., an extended
object can be modeled by a stick [22], a rectangle [23], or
a spline [24]. The ellipse is widely used to approximate the
spatial extent of the object in EOT [25]–[29]. When approx-
imating the extended object as an ellipse is not suitable or
inaccurate, some simple or compound primitives and models
besides ellipse are proposed. For example, the spline and stick
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models are used to track the elongated deformable object,
where the object’s length is much longer than its width [22],
[24]. Objects with irregular shapes are approximated by a
combination of multiple ellipses [14], [30]. Fourier series
expansion [28] is used for modeling star-convex shaped objects
and level-set model [31] is applied for non-convex shaped
objects.

In this paper, an ellipse is used to roughly estimate the
target shape from multiple unassociated noisy measurements
at each time step. The estimated ellipse provides the kinematic
(position and velocity of the centroid) and spatial extent
(orientation and size) information, which is useful for real
world applications. Two widely used models to represent
targets with spatial extent are elliptic random hyper-surface
model (RHM) [28] and random matrix model (RMM) [29].
In both models, the true shape of the object is approximated
as an ellipse. The RHM model assumes each measurement
source lies on a scaled version of the true ellipse describing
the object. The extent of the object is represented by the
entries from the Cholesky decomposition of the symmetric
positive definite (SPD) matrix [28]. In [32], multiplicative
noise terms in the measurement equation are used to model
the spatial distribution of the measurements, and a second
order extended Kalman filter (EKF) is derived for closed form
recursive measurement update. In RMM, the shape of the
target object is represented by using an SPD random matrix.
The SPD matrix and the centroid of the object are used as state
variables, which are estimated by using a corresponding filter.
Multiple improvements over the RMM model are presented
in literature [25]–[27]. The situation when the measurement
noise is comparable to the extent of the target and cannot
be neglected is considered in [27]. Considering the target will
change size and shape abruptly, especially while maneuvering,
the rotation matrix or scaling factor is multiplied on both sides
of the SPD matrix, and the corresponding filters are derived
in [25], [26]. Comparisons between the RHM and the RMM
are illustrated in [33].

The dynamic model for a moving extended object describes
how the target’s kinematic parameters and extent evolve over
time. It is useful and necessary in certain scenarios, such
as tracking with a fast maneuvering target, large sampling
period or gating techniques [15], [34]. For tracking a point
object, the dynamic model of the kinematic parameters fully
describes the state changes of the object. However, for an
extended object, the dynamic model of the spatial extent is also
important, especially when the target conducts maneuvering
motion or the shape (especially orientation) of the extended
target changes abruptly. For tracking an extended object using
RMM, there is no explicit dynamic model and the update
for the extent is based on simple heuristics which increase
the extent’s covariance, while keeping the expected value
constant [29]. An alternative to the heuristic update is to use
a Wishart distribution to approximate the transition density
of the spatial extent [26], [29], [35]. The prediction update
of extended targets within the RMM framework is explored
by multiplying the rotation matrix on both sides of the SPD
matrix in [25], [26]. In [26], comprehensive comparison results
between four dynamic models are presented. For tracking an

elliptic extended object using RHM, the covariance matrix of
the uncertainty of the object’s shape parameters is increased at
each time step to capture the variations in the shape [28]. The
dynamic model of the ellipse is based on the assumption that
the rotation angle of the ellipse is the same as the direction of
the velocity of the centroid [28].

Image moments have found a wide use in tracking,
visual servoing and pattern recognition [36]–[39]. Hu’s
moments [40], which are invariant under translation, rotation
and scaling of the object, are widely investigated in pattern
recognition.

In this paper, a novel representation to describe an ellipse,
using image moments to approximate an extended object,
is presented. Dynamic models of image moments are pre-
sented, which are used to represent an extended object moving
in uniform and coordinated turn (CT) motions. The image
moment-based RHM is used with the interacting multiple
model (IMM) approach [34], [41]–[43] for tracking tar-
gets undergoing complex trajectories. The likelihood function
based on average log-likelihood is derived for the IMM. An
unscented Kalman filter (UKF) is used to estimate the states
of each individual model of the UKF-IMM filter.

The contributions of the paper are briefly summarized as
follows:

• The minimal, complete, and non-ambiguous representa-
tion of an elliptic object, based on image moments, is
derived for extended object tracking. A new measurement
model with the explicit noise term for image moment-
based ellipse representation is derived. The UKF-IMM
filter is adapted based on the multiple dynamic models
and the newly derived measurement model.

• A novel method for calculating the average log-likelihood
of the image moment-based RHM, is presented for
the UKF-IMM filter. In order to estimate the model
probability consistently, the calculation of the average
log-likelihood function by unscented transformation is
proposed.

• Results of the UKF-IMM filter with the image moment-
based RHM and the new measurement model are
presented and compared with a benchmark algorithm
in [25] to validate the performance of the proposed
approach. Results of Monte Carlo runs with initial con-
ditions generated from predefined Gaussian distributions
are shown. The image moment-based EOT results on
a sequence of image data for car tracking are also
presented.

Compared to our previous work in [44], [45], this paper
presents (1) a detailed literature review, (2) the derivation of
the transition matrix for the image moments’ dynamics when
the object is undergoing a CT motion, (3) a new measure-
ment model with the consideration of the measurement noise
term (including mean and covariance), and the corresponding
filtering process, and (4) simulation results with thorough
evaluation and comparison with a state-of-the-art algorithm
and simulation results on real image-data.

The rest of the paper is organized as follows. In Section II,
the image moment-based RHM is proposed to approximate
an elliptic object, and its dynamic models and an implicit
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measurement model are analytically derived. In Section III, the
Bayesian inference of the position, velocity and extent of the
object from the noisy measurement points is illustrated. Since
the dynamic models and the measurement model are nonlinear,
UKF is applied to estimate the extended object. For tracking
the moving target switching between maneuvering and non-
maneuvering motions, the UKF-IMM algorithm is presented
in Section IV that uses derived image moment-based RHM.
The algorithm for the calculation of the likelihood function by
using the average log-likelihood function and unscented trans-
formation is also proposed. In Section V, the proposed image
moment-based RHM with its dynamic models is evaluated in
three tests: (1) static scenario for validating the measurement
model; (2) constant velocity (CV) and CT motion for validat-
ing the dynamic models; (3) complex trajectories for validating
the UKF-IMM algorithm with the proposed image moment-
based RHM. Estimation results of image moment-based RHM
are compared with the RMM model within the IMM frame-
work [25]. The estimation results show that the proposed
model provides comparable and accurate results. Conclusions
and future work are given in Section VI. To improve legibility,
the sub indices, such as the time step k and the measurement
number l, will be dropped unless needed in the following.

II. IMAGE MOMENT-BASED RANDOM

HYPERSURFACE MODEL

A. Representation of the Ellipse Using Image Moments
In this section, a generalized representation of the ellipse

using image moments is presented. The (i + j)th moment of
an object mij in a 2D plane is defined by [39]

mij =
∫∫

R
xi y j dxdy, ∀ i, j ∈ N (1)

where R is the surface of the object and N is the set of
natural numbers and the point inside the surface of the object
is [ x, y ]T . The centered moment is defined as [39]

ηi j =
∫∫

R
h(x̄, ȳ)dxdy (2)

where h(x̄, ȳ) = (x̄)i (ȳ) j , x̄ = x − xc, ȳ = y − yc and
[ xc, yc ]T is the centroid of the object.

Any point on the surface of the object is represented as a
point located on the boundary of the scaled ellipse. The general
equation of a family of ellipses in terms of semi-major, and
semi-minor axes, centroid, and orientation is given by

(x −xc+α(y−yc))
2

a2
1(1+α2)

+ (y − yc−α(x − xc))
2

a2
2(1 + α2)

− s2 = 0 (3)

where a1 and a2 are its semi-major and semi-minor axes,
respectively, θ is the orientation of the ellipse, α = tan θ ,
and s is a scale factor. The point [ x, y ]T inside the ellipse is
represented by varying s from 0 to 1 in (3). Rewriting (3) as
follows

a2
1α

2+a2
2

a2
1a2

2(1 + α2)
x̄2+ α2a2

2 + a2
1

a2
1a2

2(1+α2)
ȳ2+ a2

2 −a2
1

a2
1a2

2

2α

1 + α2 x̄ ȳ =s2

(4)

Consider normalized centered moments n11 = η11
A , n02 = η02

A ,
n20 = η20

A , where A is the area of the ellipse, η11, η02, and η20
are centered moments. The following relationships between
parameters of ellipse a1, a2, α, and the normalized centered
image moments (n20, n02, n11) are derived [39]

a2
1 = 2

(
n02 + n20 +

√
(n20 − n02)

2 + 4n2
11

)
a2

2 = 2

(
n02 + n20 −

√
(n20 − n02)

2 + 4n2
11

)
α = 1

2n11

(
n02 − n20 +

√
(n20 − n02)

2 + 4n2
11

)
(5)

The following expression is obtained by substituting (5) into
(4) as

4n02

a2
1a2

2

x̄2 + 4n20

a2
1a2

2

ȳ2 − 8n11

a2
1a2

2

x̄ ȳ = s2 (6)

The area of ellipse, A, is written in normalized centered
moments ni j and parameters a1, and a2 as follows [39]

A = πa1a2 = 4π
√

n20n02 − n2
11 (7)

The shape of the ellipse in (6) is represented only by image
moments by using (7) as follows

n02

4
(
n20n02 − n2

11

) x̄2 + n20

4
(
n20n02 − n2

11

) ȳ2

− 2n11

4
(
n20n02 − n2

11

) x̄ ȳ = s2 (8)

Let p = [ pT
IM, pT

pos ]T , where the shape of the ellipse is
represented by pIM = [ n11, n20, n02 ]T and the location of
the centroid of the ellipse is represented by ppos = [ xc, yc ]T .
An ellipse is expressed using a minimal, complete, and non-
ambiguous representation of parameters p, in the following
form

g(x, y,p)= n02

4
(
n20n02 − n2

11

) x̄2 + n20

4
(
n20n02 − n2

11

) ȳ2

− 2n11

4
(
n20n02 − n2

11

) x̄ ȳ − s2 = 0 (9)

B. Dynamic Motion Models
In order to derive the differential equation for ni j , the time

derivative of the centered moment, ηi j is derived first. The
time derivative of centered moment ηi j is obtained from the
time derivative of the contour of the ellipse as [39]

η̇i j =
∮
C

h(x, y)vT n̄dl (10)

where C is the contour of the ellipse, v = [ ẋ, ẏ ]T is the
velocity of the contour point x = [ x, y ]T , n̄ is the unitary
vector normal to C at point x, and dl is an infinitesimal
element of C. If C is piece-wise continuous, and vector
h(x, y)ẋ is tangent to R and continuously differentiable ∀x ∈
R, Green’s theorem can be used to represent (10) as [39]

η̇i j =
∫∫

R
div[h(x, y)v]dxdy (11)

Using the CV and CT models, specific differential equations
of ηi j are derived for each case.
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1) Linear Motion Model: When an elliptical object is moving
linearly, each point inside the ellipse at time t obeys v =
v0 + at , where v0 ∈ R

2 is the initial velocity and a ∈ R
2

is the acceleration. The centered moment of the ellipse μi j

is calculated by substituting h(x, y) = (x − xc)
i (y − yc)

j in
(11) as

η̇i j =
∫∫

R
[∂h

∂x
ẋ + ∂h

∂y
ẏ + h(x, y)(

∂ ẋ

∂x
+ ∂ ẏ

∂y
)]dxdy (12)

Since ∂h
∂x and ∂h

∂y are odd functions and R is symmetric
with respect to the centroid, the state space representation
of the normalized centered moments of the ellipse pIM =
[ n11, n20, n02 ]T is

ṗIM = 0 (13)

The state at discrete time k is given by pk =
[ pT

IM,k, pT
CV,k ]T , where pIM,k is a component of the state

related to image moments, pCV,k = [ xc,k, ẋc,k, yc,k, ẏc,k ]T

is the vector that includes the position and velocity of the
centroid of the extended object. The discretized state equation
is given as follows

pk+1 = FCVpk + wk (14)

where the state transition matrix FCV = diag(I3×3,Q), with

Q =

⎡⎢⎢⎣
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤⎥⎥⎦ ,
and wk is the zero-mean Gaussian noise with covariance
matrix CCV,k = diag(CIM,k,Cw

k ,Cw
k ), where CIM,k ∈ R

3×3

is the diagonal noise covariance for the image moments and

Cw
k =
⎡⎢⎣1

3
T 3 1

2
T 2

1

2
T 2 T

⎤⎥⎦ q,

where q is the power spectral density. Notice that the dis-
cretized white noise acceleration model is used for the state
vector pT

CV,k , which is the same as the dynamic model for
point based tracking. Other kinematic models for point based
tracking can also be used for the state vector pT

CV,k [42], [46].
2) Coordinated Turn Motion Model: The CT model, charac-

terized by constant turning rate and constant speed, is com-
monly used in tracking applications [15], [42]. An elliptic
extended object executing a coordinated turn is shown in
Fig. 1. For any point O(x, y) that belongs to the ellipse
moving with a CT motion, the motion model of the point
is represented as follows

ẋ = −ω(y − yr )

ẏ = ω(x − xr ) (15)

where ω is the turning rate and δ = [ xr , yr ]T is the
displacement between the origin of the reference frame XY
and the origin of the reference frame X0Y0. The origin of the
reference frame X0Y0 is the instantaneous center of rotation
(IC R) of the object.

Fig. 1. Coordinated turn model of the elliptic extended object.

The differential equation of the centered moments of the
ellipse when the object is undergoing CT motion is given by
substituting (15) into (12) as

η̇i j = ω

∫∫
R
[∂h

∂x
(yr − y)+ ∂h

∂y
(x − xr )]dxdy

= ω

∫∫
R
[(∂h

∂y
x − ∂h

∂x
y)+ (−∂h

∂y
xr + ∂h

∂x
yr )]dxdy (16)

The dynamic models of the normalized centered moments of
the ellipse are calculated using (16) as

ṅ11 = ω(n20 − n02)

ṅ20 = −2ωn11

ṅ02 = 2ωn11 (17)

The state space representation of the normalized centered
moments of the ellipse pIM = [ n11, n20, n02 ]T is

ṗIM =
⎡⎣ 0 ω −ω

−2ω 0 0
2ω 0 0

⎤⎦pIM (18)

and the solution to the state space in (18) is

pIM(t) = M(t, t0)pIM(t0) (19)

where

M(t, t0) =
⎡⎢⎣ cos2θ

1

2
sin2θ −1

2
sin2θ

−sin2θ cos2θ sin2θ

sin2θ sin2θ cos2θ

⎤⎥⎦
is the transition matrix from t0 to t , with θ = ω (t − t0). The
derivation of the transition matrix is shown in Appendix A.

At each time step k, the complete state to be tracked is
pk = [ pT

IM,k, pT
CT,k ]T , where pIM,k is a component of the

state corresponding to the image moments, and pCT,k =
[ xc,k, ẋc,k, yc,k, ẏc,k, ωk ]T is a vector that includes the posi-
tion and velocity of the centroid, and the turning rate of the
extended object. The state equation is given as follows

pk+1 = FCTpk + 	wk (20)
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where the state transition matrix FCT = diag(M,E),

M =
⎡⎢⎣ cos2ωk T

1

2
sin2ωk T −1

2
sin2ωk T

−sin2ωk T cos2ωk T sin2ωk T
sin2ωk T sin2ωk T cos2ωk T

⎤⎥⎦
is obtained from (19), T is the sampling period,

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
sinωk T

ωk
0 −1 − cosωk T

ωk
0

0 cosωk T 0 −sinωk T 0

0
1 − cosωk T

ωk
1

sinωk T

ωk
0

0 sinωk T 0 cosωk T 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

	 = diag(I3×3, 	CT) with

	CT =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

2
T 2 0 0

T 0 0

0
1

2
T 2 0

0 T 0
0 0 T

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

and wk ∈ R
6×1 is a zero-mean Gaussian noise vector. Notice

that this model is piece-wise continuous.

C. Measurement Model
Assuming there is the uniformly spaced measurement z̄ =

[ x, y ]T without sensor noise, (9) maps the unknown state
p to the pseudo-measurement 0 with the squared scale term
s2 ∼ U(0, 1). Similar to the RHM in [28], the squared
scale factor s2 introduced in (9) represents a set of measure-
ment points uniformly distributed inside the target. When the
measurement point is located on the centroid of the ellipse,
the value of s2 equals to 0. When the measurement point
is located on the edge of the ellipse, the value of s2 equals
to 1. The scaling factor s is approximated to be Gaussian
distributed with mean 2/3 and variance 1/18 [47]. Consider
the real measurement z = [ x̃, ỹ ]T of the unknown true
measurement z̄ = [ x, y ]T in the presence of additive white
Gaussian noise ν = [ νx , νy ]T , where νx ∼ N (0, σ 2

x ) and
νy ∼ N (0, σ 2

y ), the real measurement z is expressed as z =
z̄ + ν. To find the relationship between the state vector p and
the real measurement z = [ x̃, ỹ ]T , the measurement model
is derived by substituting z in (9). The following expression
is obtained

g(z̄,p) = g(z,p)− f (z, ν,p) = v (21)

where v is the pseudo-measurement with the true value of 0
and f (z, ν,p) is a polynomial related to the white noise ν,
which has the mean

E
[

f (z, ν,p)
] = ρ(n02σ

2
x + n20σ

2
y ) (22)

and covariance

C f (z,ν,p) = ρ2
{

2n2
02σ

4
x + 2n2

20σ
4
y + 4n2

11σ
2
x σ

2
y

+ 4
[
n02(̃x − xg)− n11(ỹ − yg)

]2
σ 2

x

+ 4
[
n20(ỹ − yg)− n11(̃x − xg)

]2
σ 2

y

}
(23)

where ρ = 1/4
(
n20n02−n2

11

)
. The derivation of f (z, ν,p) and

its first two moments are shown in Appendix B. Since the
measurement model is highly nonlinear, the UKF presented in
the next section is used to estimate the state vector p.

III. UKF FOR EXTENDED OBJECT TRACKING USING

IMAGE MOMENT-BASED RHM
On the basis of the dynamic motion models and the

measurement model, a recursive Bayesian state estimator
for tracking the elliptic extended object is derived. At each
time step, several measurement points from the object are
received. The task of the Bayesian state estimator is to perform
backward inference, inferring the true state parameters from
the measurement points. The measurement points at each time
step k are denoted as Zk = {zk,l}Lk

l=1, assuming there are Lk

measurements and each measurement point is zk,l = [ x, y ]T .
The state vector up to time step k, when all the measurements
are incorporated, is denoted as pk . Suppose that the posterior
probability density function (pdf) p(pk−1 | Zk−1) at time step
k − 1 is available, the prediction p(pk | Zk−1) for time step k
is given by the Chapman-Kolmogorov equation as [34]

p(pk | Zk−1) =
∫

p(pk | pk−1)p(pk−1 | Zk−1)dpk−1 (24)

where the state vector evolves by the conditional density
function p(pk | pk−1). The conditional density function
p(pk | pk−1) is derived based on different dynamic models
in Subsection II-B.

Assuming the measurements Zk = {zk,l}Lk
l=1 at time k are

independent, the prediction p(pk | zk,l) is updated recursively
via Bayes’ rule as [28]

p(pk | zk,l) ∝ p(zk,l | pk)p(pk | zk,l−1) (25)

where p(pk | zk,0) = p(pk | Zk−1) and p(pk | Zk) = p(pk |
zk,Lk ).

When the target is moving with uniform motion (CV model,
which is a linear system), its states pk|k−1 and covariance
Ck|k−1 are predicted based on the dynamic model (14) as

pk|k−1 = FCVpk (26)

Ck|k−1 = FCVpkFT
CV + CCV (27)

However, the proposed image moment-based RHM and
its CT model are nonlinear. When the system is nonlinear,
a linearization method such as the EKF will introduce large
errors in the true posterior mean and covariance [48]. UKF
addresses this problem by using unscented transformation
(UT), which doesn’t require the calculations of the Jacobian
and Hessian matrices. The UT sigma point selection scheme
results in approximations that are accurate to the third order for
Gaussian inputs for all nonlinearities and has the same order
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of the overall number of computations as the EKF [48]. When
the state variables in p ∈ R

M×1 with mean p̄ and covariance
Cp are propagating through a nonlinear function g = ψ(p),
such as (19) or (21), the mean ḡ and covariance Cg of g are
approximated by generating the UT sigma points Xi as [48]

ḡ =
2M∑
i=0

W (m)
i Yi (28)

Cg =
2M∑
i=0

W (C)
i {Yi − ḡ} {Yi − ḡ} (29)

where Yi = ψ(Xi ). The sigma points Xi and the weights W (m)
i

and W (C)
i are calculated by [48]

X0 = p̄

Xi = p̄ +
(√
(M + λ)Cp

)
i

i = 1, . . . ,M

Xi = p̄ −
(√
(M + λ)Cp

)
i

i = M + 1, . . . 2M

W (m)
0 = λ/(M + λ)

W (C)
0 = λ/(M + λ)+ (1 − γ 2 + β)

W (m)
i = W (C)

i = 1/ [2(M + λ)] i = 1, . . . , 2M (30)

where λ is the scaling parameter as λ = γ 2(M +κ)− M , γ is
the parameter that determines the spread of the sigma points
around the mean p̄, κ is the secondary scaling parameter that
is usually set to 0 and β is the parameter that incorporates
the prior knowledge of the distribution of p. The UKF for the
image moment-based RHM is illustrated in Algorithm 1.

IV. TRACKING EXTENDED TARGET WITH IMM
In this section, the proposed image moment-based random

hypersurface model is embedded within the IMM approach for
tracking an extended target undergoing complex trajectories.
When the extended target is switching between maneuvering
and non-maneuvering motions, its kinematic state and spatial
extent may change abruptly. Multiple model approaches, such
as the IMM, are effective at tracking a target with complex tra-
jectories, especially with a high maneuvering index [42], [43].
The IMM approach assumes the target obeys one of a finite
number of motion models and identifies the beginning and the
end of the motion models by updating the model probabilities.
The adaptation via model probability update helps the IMM
approach keep the estimation errors consistently low, both
during maneuvers as well as non-maneuver intervals. Methods
for using IMM when the dimensions of the state vectors do
not match are presented in [41].

The image moment-based model with the derived dynamic
motion models, such as the CV motion model and the CT
motion model in Section II, are integrated in an IMM frame-
work. Since the dynamic motion model and the measurement
model are nonlinear, the UKF-IMM algorithm is used. The
dimensions of the states for CV and CT models are not
the same. During the mixing in the IMM, the state vector
of the CV model is appended with a zero component [42].
The flowchart of the UKF-IMM algorithm is shown in Fig. 2,
where μi| j

k−1 is the mixing probability, pi| j is the Markov chain

Algorithm 1 UKF With Sequential Processing of Mea-
surements

Set the time steps N;
Set the initial state vector p0 and covariance C0;
for k=1 to N do

case CV model
Predict state pk|k−1 as in (26);
Predict covariance Ck|k−1 as in (27);

case CT model

Augment the state vector pa
k−1 = [(pk−1)

T ,wT
k

]T
;

Calculate sigma points using (30);
Predict states based on (20) with sigma points;
Use (28), (29) to calculate the mean and
covariance of the state vector pk|k−1;

Obtain the measurement points Zk = {zk,l}Lk
l=1 at time

step k;
for l=1 to Lk do

Calculate the mean and covariance of
f (zk,l , ν,pk|k−1,l ) using (22) and (23);
Augment the state vector

pa
k|k−1,l =

[(
pk|k−1,l

)T
, f (zk,l , ν,pk|k−1,l ), s

]T
;

Calculate sigma points using (30);
Calculate pseudo-measurement vk,l based on (21)
for measurement point zk,l ;
Use (28), (29) to calculate the mean and
covariance of the vk,l ;
Update state vector pk,l ;

Fig. 2. Flowchart of UKF-IMM framework.

transition matrix between the i th and j th models and � j
k is the

likelihood function corresponding to the j th model. There are
multiple measurement points at each time step, the sequential
approach is adopted for UKF and the likelihood function is
generated based on the measurement model.

At each time step k, assuming there are Lk measurements
Zk = {zk,l}Lk

l=1. The pseudo-measurement variable vk,l is
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Algorithm 2 Calculation of the Measurement Likelihood
Λ̄

j
k Corresponding to the jth Model by Unscented Trans-

formation

Obtain the predicted state vector p j
k|k−1 and covariance

C j
k|k−1 of model j ;

Obtain the measurement points Zk = {zk,l}Lk
l=1 at time

step k;
for l=1 to Lk do

Calculate the mean and covariance of
f (zk,l , ν,pk|k−1) using (22) and (23);
Augment the state vector

pa
k|k−1,l =

[(
p j

k|k−1,l

)T
, f (zk,l , ν,pk|k−1), s

]T

;

Calculate sigma points X using (30);
Propagate sigma points X through the measurement
model in (21);
Use (28), (29) to calculate the mean and covariance of
the pseudo-measurement vk,l ;
Sum the values of the log-likelihood function using
(31);

Calculate the value of the average log-likelihood function
using (32) and the measurement likelihood using (33);

generated for each measurement zk,l , based on the predicted
state vector p j

k|k−1, covariance C j
k|k−1 and the measurement

model in (21). The mean and the covariance of the pseudo-
measurement variable vk,l are obtained via UT. The log-
likelihood function based on the pseudo-measurement variable
vk,l is

log� j
k =

Lk∑
l=1

[
− (0 − φv,l)

2

2σ 2
v,l

− log

(√
2πσ 2

v,l

)]
(31)

where φv,l and σ 2
v,l are the mean and covariance of the pseudo-

measurement vk,l , generated for each measurement point zk,l .
In many cases, the likelihood � j

k becomes extremely small
and the model probability is inaccurate. To avoid this issue,
the average log-likelihood log �̄ j

k is given by

log �̄ j
k = 1

Lk
log� j

k (32)

and

�̄
j
k = exp

(
log �̄ j

k

)
(33)

which is the value of the measurement likelihood between 0
and 1. This measurement likelihood is used in the IMM filter.
The details of the calculation of the measurement likelihood
are shown in Algorithm 2.

V. SIMULATION RESULTS

In this section, several simulation tests are conducted to
evaluate the performance of the proposed image moment-
based extended object tracking. To validate the measurement
model in (21), the shape of the static object is estimated at
different noise levels in the first simulation. Then the tracking

of the extended targets moving with CV motion and CT motion
are demonstrated. The CV model in (14) and the CT model in
(20) are used and validated for these cases. At last, targets with
complex trajectories are simulated. In this case, the UKF-IMM
algorithm with the CV model and the CT model is applied.
The improved RMM in combination with the IMM approach
in [25] is implemented as a benchmark comparison for our
proposed image moments based random hypersurface model.

The intersection over union (IoU) is used as the metric to
evaluate the proposed algorithm. The IoU is defined as the
area of the intersection of the estimated shape and the true
shape divided by the union of the two shapes [24]

IoU = area(p)∩ area(p̂)
area(p)∪ area(p̂)

(34)

where p is the true state vector and p̂ is the estimated state
vector. IoU is between 0 and 1, where the value 1 corresponds
to a perfect match between the estimated area and the ground-
truth. Additionally, the root mean squared errors (RMSEs) of
the estimated position and velocity of the centroid [ xc, yc ]T

of the extended target are also evaluated, which are defined
as [42]

RMSE =
√√√√1

I

I∑
i=1

ξ2
i (35)

where I is the number of Monte Carlo runs, ξi is the error
of the estimation from the i th run. For the RMSE of the
position, ξi,p � (x̂c − xc)

2 + (ŷc − yc)
2, where [ x̂c, ŷc ]T

is the estimated centroid of the extended target and [ xc, yc ]T

is the ground-truth. Similarly, for the RMSE of the velocity,
the estimation error is defined as ξi,v � ( ˆ̇xc − ẋc)

2 +( ˆ̇yc − ẏc)
2,

where [ ˆ̇xc, ˆ̇yc ]T is the estimated velocity of the centroid
and [ ẋc, ẏc ]T is the ground-truth. The filter tuning is based
on the Monte Carlo method. The parameters include the
initial kinematic states, the initial shape states and the process
noise covariance. One-point initialization in [42] is used for
tuning the kinematic parameters. The shape parameters and
the process noise covariance are tuned by performing a para-
meter sweep with Monte Carlo runs. The parameters with the
smallest errors are chosen for validation and comparison.

A. Static Extended Object
The major and minor axes of the elliptic target are set

to 3cm and 2cm, respectively. The simulation is performed
by uniformly sampling 200 points from the static extended
objects. Three different levels of additive white Gaussian
noise with variances diag(0.12, 0.12) (low), diag(0.52, 0.52)
(medium) and diag(1, 1) (high, in cm2), are used to generate
the noisy measurements.

UKF is used for estimating the state given noisy mea-
surements uniformly sampled from ellipse-shaped extended
objects. The prior of the shape is specified as a circle with
radius of 1cm. The centroid of the ellipse is initialized as ran-
dom variables with Gaussian distribution of mean [ 0.1, 0.5 ]T

and covariance diag(0.01, 0.25) (with position in cm). The
estimation results of one particular run for the ellipse-shaped
object are shown in Figs. 3(a), 3(b), 3(c). Fig. 5 shows the
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Fig. 3. Estimation of the shape of an extended target with different measurement noise levels in a particular run (200 measurements); estimation
of the shape is drawn in green and the ground truth is drawn in gray.

Fig. 4. Tracking of the extended objects during CV model and CT model in a particular run; initial shape is shown in red, estimation of the shape is
drawn in green and the ground truth is drawn in gray: (a) The ellipse with a constant velocity; (b) The ellipse executes a 3◦/s coordinated turn.

Fig. 5. The mean values of IoU over 100 Monte Carlo runs with different
number of measurements.

mean values of IoU over 100 Monte Carlo runs with different
numbers of measurements. With the increases in covariance
of the measurement noise, the proposed image moment-based
model also gives a shape close to the actual shape of the
targets.

B. Linear Motion
In this subsection, an extended object with elliptical shape

moving with a constant velocity is simulated. The major and

minor axes are set to 30cm and 20cm, respectively. The
extended object originates at position [ 0, 80 ]T cm and moves
with a constant velocity of [ 4, 2 ]T cm/s for 60 seconds. The
measurements are sampled from the target every 10 seconds.
At each time step k, uniformly sampled measurements from
the objects are generated and the number of the measurement
points is generated with Poisson distribution of mean 50.

For UKF implementation, the prior of the shape vari-
ables is initialized as pIM = [ n11, n20, n02 ]T =
[ 2, 30, 20 ]T with covariance diag(10, 2, 1). The kinematic
states are initialized as random variables with Gaussian
distribution of mean pCV,k = [ xc,k, ẋc,k, yc,k, ẏc,k]T =
[ 0, 4, 80, 2 ]T and covariance diag(32, 0.18, 32, 0.18) (with
position in cm and velocity in cm/s). The additive white
Gaussian noise variance is selected as diag(42, 42) for each
point measurement. The power spectral density of the process
noise covariance in the CV model in (14) is set as q = 0.01
and CIM = diag(0.01, 0.01, 0.01). The tracking results for the
ellipse-shaped extended object are shown in Fig. 4. The mean
value of the RMSE of the position over 100 Monte Carlo runs
is 1.40cm, and the mean value of the RMSE of the velocity
over 100 Monte Carlo runs is 1.15cm/s. The mean value of
the IoU is 0.81.

The RMM algorithm in [25] is also tested in this case. The
kinematic process noise is q = 0.1 in (14) and the extension
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agility is δ = 100. The rotation angle of the rotation matrix
for the SPD matrix is set as θ = 0◦. The mean value of the
RMSE of the position over 100 Monte Carlo runs is 1.24cm,
and the mean value of the RMSE of the velocity over 100
Monte Carlo runs is 1.04cm/s. The mean value of the IoU
of the ellipse is 0.78. The image moment-based model has
comparable accuracy with the RMM in terms of the RMSE
and IoU metrics.

C. Coordinated Turn Motion
The extended object undergoing CT motion is simulated in

this case. The extended object located at
[

0, 80
]T cm moves

with velocity
[

5, 1
]T cm/s at time t = 0, and executes a

3◦/s coordinated turn for 60 seconds. The sampling interval
is 10 seconds. At each time step, noisy measurement points are
uniformly generated from the extent of the target and the num-
ber of measurements is generated with Poisson distribution of
mean 50. White Gaussian noise with variance of diag(42, 42)
(with position in cm and velocity in cm/s) is added to each
measurement.

The extended object executing a coordinated turn is esti-
mated based on the dynamic model (20). The prior of the
shape variables is initialized as pIM = [ n11, n20, n02 ]T =
[ 1, 30, 20 ]T with covariance diag(10, 5, 0.1). The kinematic
states are initialized as random variables with Gaussian distri-
bution. The ground truth is set as its mean and the covariance
matrix is diag(32, 0.18, 32, 0.18, (2◦/s)2). The tracking results
for the ellipse-shaped object are shown in Fig. 4(b). The mean
value of the RMSE of the position over 100 Monte Carlo runs
is 1.67cm. The mean value of the RMSE of the velocity over
100 Monte Carlo runs is 0.32cm/s, and the mean value of the
IoU of the ellipse is 0.81.

The RMM algorithm in [25] is also tested in this case.
The kinematic process noise is set as q = 0.1 in (14)
and the extension agility is set as δ = 10. The rotation angle
of the rotation matrix for the SPD matrix is set as θ = 30◦.
The mean value of the RMSE of the position over 100 Monte
Carlo runs is 1.29cm, and the mean value of the RMSE of the
velocity over 100 Monte Carlo runs is 1.27cm/s. The mean
value of the IoU of the ellipse is 0.71. The image moment-
based model, which provides a dynamic model for the shape
of an extended object undergoing a coordinated turn, estimates
the position and velocity, as well as the orientation and extent
of the target very accurately.

D. Complex Trajectory
The image moment-based RHM is embedded in the IMM

framework. The target initially located at the origin moves with
a constant velocity of 50km/h. The target first executes a 45◦
coordinated turn at 260 seconds with a turning rate of 0.46◦/s
for 100 seconds, then executes two 90◦ coordinated turns at
570 seconds and 830 seconds with a turning rate of 0.90◦/s
for 100 seconds. The trajectory is shown in Fig. 6. Similar
trajectories are also used in [25], [27], [32]. The major and
minor axes of the elliptic target are set to 340m and 80m,
respectively. The number of the measurements in each scan is
generated based on a Poisson distribution with mean of 10,

Fig. 6. The trajectory, measurements and one running example of the
simulation. Estimation results are shown for every 30 seconds.

Fig. 7. Model probability of the UKF-IMM filter for the image moment-
based RHM. The gray areas indicate the ground truth of the maneuvering
intervals.

and the measurement points are uniformly distributed inside
the ellipse. The variance of the additive white Gaussian noise
is diag(102, 102) (with position in m and velocity in m/s),
and the sampling time is 10s.

The proposed image moment-based RHM with the UKF-
IMM filter combines the CV model in (14) and the CT
model in (20). The power spectral density q for the
process noise covariance in the CV model in (14) is set
as 0.01 and CIM = diag(1, 1, 1). For the CT model
in (20), wk = [ 0.0001, 0.0001, 0.0001, 0.0001, 0.0001,
(0.02◦)2]T . The extent of the target is initialized as a circle of
radius 100m. The parameters of the initial circle (i.e., center
and the radius) or initial ellipse (i.e., center, semi-major and
semi-minor axes lengths, and the orientation) are chosen by
observing the measurement data in the first frame, such that the
area of the circle or ellipse is the same as or smaller than the
smallest enclosing area of the measurement points. The initial
image moment states are computed based on the initial shape
of the target. The initial covariance of the image moments is
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Fig. 8. Simulation results of the proposed image moment-based RHM using UKF-IMM method, the image moment-based RHM using CT model
and the RMM in [25] over 1000 Monte Carlo runs: (a) The average RMSE of the position of the centroid; (b) The average RMSE of the velocity of
the centroid; (c) The average IoU.

tuned based on the Monte Carlo runs. The kinematic states
(position and velocity in each dimension) are initialized as
random variables with Gaussian distribution. Its mean is the
ground truth and the covariance matrix is set as diag(100, 2).
The turning rate for the CT model is initialized as a random
variable with distribution N (0, 1). The initial probability μ j

0
of the two models in the IMM filter is equal and the Markov
chain transition matrix is selected to be pi| j = [ 0.99 0.01

0.10 0.90

]
.

The model probability of the proposed algorithm is shown in
Fig. 7.

The proposed image moment-based RHM with UKF-IMM
algorithm is compared with the image moment-based RHM
with CT model and the RMM with IMM algorithm in [25].
The image moment-based RHM with CT model is using
the same paramenters as the CT model in the RHM with
UKF-IMM method. The RMM-IMM algorithm uses two mod-
els. The model with a high kinematic process noise (q = 0.1
in (14)) and a high extension agility (δ = 10) accounts for
abrupt changes in shape and orientation during maneuvers,
and another model with low kinematic noise (q = 0.01 in
(14)) and a low extension agility (δ = 30) accounts for the
non-maneuvers. The rotation angles of the rotation matrices
for the two SPD matrices are set as θ = 0◦ and θ = 9◦ [25] .

The simulation results over 1000 Monte Carlo runs are
shown in Fig. 8. The average IoU value of the image moment-
based RHM with UKF-IMM method is 0.67, the average IoU
value of the image moment-based RHM only using CT model
is 0.64, and the average IoU value of the RMM is 0.71.
The proposed image moment-based RHM with UKF-IMM
method has lower RMSE values both for position and velocity,
and higher average IoU value compared with the estimation
results of the RHM with the CT model. The proposed image
moment-based RHM has significantly lower RMSE values
both for position and velocity, and comparable average Iou
value to the RMM in [25]. The centroid of the ellipse estimated
by the proposed image moment-based RHM is closer to
the ground-truth than the centroid of the ellipse estimated
by RMM. The target is a flattened ellipse, which has an
eccentricity of 0.97. There are very few measurement points
located around the tip area of the ellipse, and the proposed
image moment-based RHM is not as sensitive as the RMM

to these measurements. The estimated ellipse by the RMM is
more flattened compared with the proposed image moment-
based RHM. Besides, the rotation angles need to be provided
beforehand for the RMM in [25], whereas the image moment-
based RHM estimates the turning rate automatically during
the estimation process. In real applications, it’s impractical to
obtain the turning rates in advance.

E. Simulation Using Image-Data
Another scenario where a car is driving through an inter-

section is simulated. This simulation is based on the real
trajectory generated from a video clip. A short video clip
from the Stanford drone dataset [49] is used, which shows
a moving car from a bird’s eye view. The video is captured
with a 4k camera mounted on a quadcopter platform (a 3DR
solo) which is hovering above an intersection on a university
campus at an altitude of approximately 80 meters. The video
clip contains 431 frames with an image size of 1422 by
1945 pixels, and has been undistorted and stabilized [49].
The ground truth is manually labeled at each frame and the
measurement points are uniformly generated inside the bound-
ing box of the ground truth. The number of measurements in
each frame is generated based on a Poisson distribution with
mean of 10. The sensor noise is Gaussian white noise with
variance diag(102, 102) (with position in pixels and velocity in
pixels/frame). In Fig. 9, the first top-view scene of the moving
car is shown and 11 snapshots of the estimation results out
of the 431 frames are plotted on the same figure. The car
is switching between linear motions and rotational motions,
which are approximated by CV motions and CT motions,
respectively.

The CV model in (14) and the CT model in (20)
with the UKF-IMM filter are applied to track the moving
car. The power spectral density q for the process noise
covariance in the CV model in (14) is set as 0.1 and
CIM = diag(0.01, 0.01, 0.01). For the CT model in (20),
wk = [ 0.01, 0.01, 0.01, 0.01, 0.01, (0.1◦)2 ]T . The kine-
matic states (position and velocity in each dimension) are
initialized as random variables with Gaussian distribution.
Its mean is the ground truth and the covariance matrix is set
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Fig. 9. Illustration of the estimation results in a particular run by the
proposed image moment-based RHM. The target is initialized as a circle
(green circle) with a radius of 20 pixels. The estimated result (yellow
ellipse), the measurements (red crosses) and the ground truth (blue box)
are shown for every 40 frames.

as diag(1, 0.02, 4, 0.08). The turning rate for the CT model
is initialized as a random variable with distribution N (0, 1).
The initial probability μ j

0 of the two models in the IMM filter
is equal and the Markov chain transition matrix is selected
to be pi| j = [ 0.90 0.10

0.10 0.90

]
. The proposed algorithm runs with

1000 Monte Carlo runs and the estimation results are shown in
Fig. 10. The mean value of the RMSE of the centroid position
over 1000 Monte Carlo runs is 7.28 pixels. The mean value
of the IoU over 1000 Monte Carlo runs is 0.70. The ground
truth is approximated as the smallest enclosing ellipse of the
bounding box.

F. Discussion
The proposed image moment-based RHM and its measure-

ment and dynamic models are validated in the simulations of
the static target, the target with the CV motion and the target
with the CT motion. As the noise levels are increased, the size
of the estimated elliptical shape doesn’t increase. When the
target is moving with the CV motion or the CT motion,
the proposed algorithm predicts the position and velocity of
the moving target, as well as the spatial extent and orientation.
To estimate the target with complex trajectory, the proposed
image moment-based RHM is embedded within the IMM
framework. The proposed average measurement log-likelihood
function estimates the model probability accurately and con-
sistently. The RMSE values of the position and velocity of the
target’s centroid are lower than the results from the compared

Fig. 10. Tracking results of the proposed image moment-based RHM
algorithm over 1000 Monte Carlo runs.

RMM algorithm. The state of the RMM is the centroid’s
kinematic parameters and the random matrix, which is updated
based on the mean and spread matrix of the measurement
points [25]. The proposed RHM uses the centroid’s kinematic
parameters and the three image moments as the state variables,
which are updated sequentially based on each individual
measurement point. Later improvements will be focused on
the block processing of measurements, and estimating the
kinematic states and extent in two separate steps. The accu-
rate dynamic model has the advantage in certain scenarios,
especially when predicting the location of a target undergoing
fast motion or when predicting with a relatively low sampling
frequency.

VI. CONCLUSION

In this paper, the minimal, complete, and non-ambiguous
representation of an elliptic object is modeled based on image
moments for extended object tracking. The measurement
model and the dynamic models of the image moments for
CV motion and CT motion are analytically derived. The UKF
and its combination with the IMM approach is applied for
estimating the position, velocity and spatial extent based on
the noisy measurement points uniformly generated from the
extended target. The proposed image moment-based RHM and
its filters are validated and evaluated in different simulation
scenarios. The evaluation results show that the proposed model
and its inference provide accurate estimations of the posi-
tion, velocity and extent of the targets. The proposed image
moment-based RHM method will be tested on real experiment
data in applications, such as autonomous driving and air-drone
following and tracking, and it will be embedded into other
Bayesian based methods for multiple extended objects tracking
as a part of future research.
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APPENDIX A
TRANSITION MATRIX OF THE COORDINATED

TURN MOTION

ṗIM = BpIM (36)

where B =
⎡⎣ 0 ω −ω

−2ω 0 0
2ω 0 0

⎤⎦. The solution to this linear time-

invariant state space equation (36) is

pIM(t) = eBτpIM(t0) (37)

in which τ = t − t0.
The interpolation polynomial method [42] is used to get the

transition matrix of the dynamic equation f (λ) = eλτ . Firstly,
by solving |λI − B| = λ(λ2 +4ω2) = 0, the eigenvalues of the
matrix B are calculated as λ1 = 0, λ2 = 2ωj and λ3 = −2ωj .
Then, a polynomial g(λ) = ∑2

k=0 gkλ
k is found, which is

equal to f (λ) = eλτ on the spectrum of B, that is

∂ j

∂λ j g(λ)|λ=λi = ∂ j

∂λ j f (λ)|λ=λi (38)

in which i = 1, · · · , 3 and j = 0. The polynomial g(λ) is
calculated as

g(λ) = 1 + sin(2ωτ)

2ω
λ+ sin2(ωτ)

2ω2 λ2 (39)

Then, f (B) = eBτ is calculated by making it equal to g(B).
The transition matrix f (B) = eBτ is calculated as

eBτ =
⎡⎢⎣ cos2θ

1

2
sin2θ −1

2
sin2θ

−sin2θ cos2θ sin2θ

sin2θ sin2θ cos2θ

⎤⎥⎦ ,
where θ = ωτ .

APPENDIX B
DERIVATION AND MOMENT MATCHING OF THE

MEASUREMENT MODEL NOISE TERM

The real measurement z = [ x̃, ỹ ]T of the unknown true
measurement z̄ = [ x, y ]T is expressed as z = z̄ + ν, where

ν = [
νx , νy

]T is the additive white Gaussian noise with
νx ∼ N (0, σ 2

x ), νy ∼ N (0, σ 2
y ). Replacing the unknown true

measurement z̄ with the real measurement z = z̄ + ν in (9)
and separating the terms as

g(z,p) = g(z̄,p)− f (z, ν,p) (40)

where f (z, ν,p) is the polynomial containing the white noise
terms as

f (z, ν,p) = ρ

[
ν2

x n02 + ν2
yn20 + 2νxνyn11

+ 2(n02νx − n11νy)(̃x − xc)

+ 2(n20νy − n11νx)(ỹ − yc)

]
(41)

where ρ = 1/4
(
n20n02−n2

11

)
. The polynomial f (z, ν,p) is

approximated as a random variable with Gaussian distribution,
which has the same mean and covariance as f (z, ν,p) by

moment matching. The closed-form expression of the first two
moments of f (z, ν,p) are

E
[

f (z, ν,p)
] = ρ

[
n02σ

2
x + n20σ

2
y

]
(42)

E
[

f (z, ν,p)2
]

= ρ2
{

3n2
02σ

4
x + 3n2

20σ
4
y

+ (2n02n20 + 4n2
11)σ

2
x σ

2
y

+ 4 [n02(x − xc)− n11(y − yc)]2 σ 2
x

+ 4 [n20(y − yc)−n11(x −xc)]
2 σ 2

y

}
(43)

The covariance of f (z, ν,p) is derived as

C f (z,ν,p) = E
[

f (z, ν,p)2
]

− E
[

f (z, ν,p)
]2

= ρ2
{

2n2
02σ

4
x + 2n2

20σ
4
y + 4n2

11σ
2
x σ

2
y

+ 4 [n02(x − xc)− n11(y − yc)]2 σ 2
x

+ 4 [n20(y − yc)− n11(x − xc)]
2 σ 2

y

}
(44)
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