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A B S T R A C T

In this paper, a novel method for early estimation of a human’s action intention is presented. Human
intention, modeled as a goal location associated with a hand motion and eye gaze dynamics, is inferred
by fusing information from collected hand motion and gaze motion data. The algorithm, called Human
Intention Estimator with Variable Structure (HIEVS), uses two variable structure Interacting Multiple Model
(VS-IMM) filters in parallel to process the hand motion and gaze data and generate posterior model probabilities
associated with a finite set of action models. The posterior model probabilities from each filter are then fused
at the end of each iteration and the current intention is estimated as the model, which has the highest fused
posterior model probability. Two model set augmentation (MSA) algorithms are presented to select the active
models for each VS-IMM during each iteration. For the hand motion filter, an MSA algorithm which computes
the human’s reachable workspace is used. The MSA algorithm for the gaze filter utilizes the human’s visual
span to determine the active models. This method allows for accurate early prediction of the human’s intention
even when the total model set is large. A real world experiment is performed to validate the proposed method.
. Introduction

Human–Robot (HR) Collaboration has been a growing area of re-
earch in recent years [1,2]. The work in this area aims to overcome
he constraints which robots encounter in manufacturing, surgical and
ehabilitative scenarios. For example, on an assembly line, it is often
he case that many different machines, dedicated to single tasks, are
equired in order to fully assemble a final product. In such cases, the
ost of the various machines, installation, and maintenance can easily
ecome burdensome. Additionally, current robots are often limited in
he tasks which require a high level of dexterity, whereas humans have
etter cognitive skills and flexibility to perform dexterous operations.
R Collaboration allows humans and robots to work directly with one
nother without the need for physical barriers between them. This
roadens the span of operations which can be performed by the team
f humans and robots in a cost effective manner but also brings the
hallenges of safety of humans working around robots and efficiency
f the team work. To improve the human safety and efficiency, it is
equired that the robot first be able to interpret the human’s action
ntentions in order to assess its own appropriate actions. The intention
stimation can also improve the speed of the current HR collaborative
perations.

In [3–5], it is shown that when two humans interact, they infer
ach others intent in order to safely and effectively collaborate. When
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humans and robots collaborate, inference of the human’s intention
improves the overall performance of the task [6–8]. Characteristics
of the objects in the workspace [9], human movement [10], heart
rate and skin response [11] or information using electromyography
(EMG) [12], ultrasound [13] have been used to infer the intention.
In [12], a layered hidden Markov model (HMM) is used for intent
modeling and estimation using sEMG data. A linear time invariant (LTI)
transfer function model is used in [8] for capturing the human response
and intent estimation. Intention inference as a goal-reaching motion
profile estimation for collaboratively carrying heavy objects is pre-
sented in [14]. In [15], a Gaussian Process (GP) is used to predict hand
trajectories during an object handover task. Multiple model approach
to represent human hand trajectories for learning grasp behaviors using
fuzzy logic is presented in [16]. In this paper, a dynamic neural network
(DNN) is used to capture the nonlinear effects of the human motion and
a point-attractor dynamics is used to model eye gaze to capture point
to point converging motion of the gaze.

Recently, the measurement and estimation of 3-dimensional (3D)
human eye gaze has been used in human intention schemes. The study
presented in [17] suggests a human’s gaze is directly related to their
intended actions. It is demonstrated in [18] that humans predict action
goals by fixating on the end location of an action even before it is
957-4158/© 2021 Elsevier Ltd. All rights reserved.
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reached. In [19], a robot assistant is given instructions correlated to
a human intention measure acquired from the human’s gaze. In [20],
a method to communicate bi-directional navigation intent is developed
using augmented reality (AR) and eye-tracking for improved safety in
HR interaction. The intention to handover an object is predicted by
using key features extracted from the vision and the pose (position +
orientation) data in [21]. In [22], gaze information estimated from RGB
(Red-Green-Blue) camera images using a convolution neural network
(CNN) model is utilized to initialize model probabilities for hand mo-
tion tracking using an Interacting Multiple Model (IMM) filter [23]. The
methods in [22,24], however, does not utilize gaze information after
initialization. The work in [25] presents the human intention algorithm
in which both gaze and motion data are utilized in every iteration of
a fixed structure IMM (FS-IMM) filter. The method, however, is not
computationally efficient when the intention estimator needs to choose
from a large number of possible intention models.

To overcome the computational efficiency challenge when a large
number of action intention models are present, the work in this paper
utilizes variable structure IMM (VS-IMM) filter. The VS-IMM algorithm,
presented in [26–28], is similar in structure to a FS-IMM except that
at the beginning of each iteration, a model set augmentation (MSA)
algorithm selects the most likely subset of the total model set. The
filters are only run for models corresponding to the active model set.
By constraining the active models in the model set, a large number of
total possible intention models can be considered without necessarily
increasing the computational burden.

A novel human intention estimation method, called Human Inten-
tion Estimator with Variable Structure (HIEVS), is proposed in this
paper. The algorithm utilizes two VS-IMM filters [28] running in par-
allel. One filter produces model probabilities by processing human
hand position data while the other simultaneously generates model
probabilities by processing human gaze data. Once the posterior model
probabilities are made available by each filter they are fused according
to the method presented in [25]. Two MSA algorithms are presented to
select active model sets for each filter. The MSA algorithms hinge on
the concepts of the human’s reachable workspace and their peripheral
span at each time instance. Using the fused model probabilities, the
algorithm predicts the current model which the human is operating
under where the model is comprised of a human dynamics which
is learned in an initial training phase and a goal location to which
the learned dynamics converge. The contributions of the paper are
summarized as follows.

• A method to fuse human hand and eye gaze information using VS-
IMM filter is presented to estimate the reaching intent when large
set of objects are available to reach. The uncertain human hand
motion is modeled using a dynamic NN (DNN), which is learned
subject to contraction constraints such that the motion profile
converges to the object location. The eye gaze motion model is
developed using a novel point attractor dynamics.

• A human arm reachable space is computed for selecting active
hand motion models. Similarly, human head position tracking and
3D gaze point prediction along with object location is used to
compute active models for eye-gaze filter. A fusion equation is
developed to fuse the posterior model probabilities of the hand
motion and eye-gaze filter.

• Two sets of experiments are conducted to test the HIEVS algo-
rithm for object reaching motions. Both experiments use large
number of objects kept on a table that can be reached by the hu-
man. For the second set of experiments, the objects are clustered
and kept close to each other in a cluster to test the performance
of the HIEVS algorithm in the presence of closely kept objects.

Section 2 provides a description of an example problem which is
solved using the HIEVS algorithm. The motion models used to rep-
resent human hand motion and eye gaze are presented in Section 3,
2

and the method used to learn their respective acceleration functions
is presented in Section 4. The novel MSA algorithms used to select
the active model sets for each filter are described in Section 5. The
HIEVS algorithm is presented in Section 6. In Section 7 experiments
are described which show the utility of the HIEVS algorithm in object
reaching task, followed by conclusions given in Section 8.

2. Problem formulation and solution approach

Consider a scenario wherein a human and a robot are collabora-
tively performing an assembly task in a large warehouse environment.
The human and the robot are both aware of all 𝑁 components in the
assembly, the location of the components within the warehouse, and
how to attach the component to the assembly. This information is often
available in a manufacturing warehouse scenario via a Bill of Materials
(BoM) and a set of building instructions. In this work, it is assumed that
each component is defined by its 3D coordinates within the warehouse,
defined as  = [𝑔1, 𝑔2,… , 𝑔𝑁 ] and is associated with exactly one
building instruction, which is represented as a gaze and hand motion
profile, that is taught to the robot via expert demonstrations. The hand
motion is described by using a point attached to the palm of the human
hand. The goal location, gaze motion, and hand motion tuple is referred
to as a model, where 𝑀 = [𝑀1,𝑀2,… ,𝑀𝑁 ] is the entire set of 𝑁
models. The assembly process is such that components can be attached
in many different sequences to achieve the desired result. The human
begins to assemble the components in a sequence which he/she sees fit.
The robot, who is equipped with 3-dimensional (3D) skeletal tracking
data and 3D gaze point measurements of the human, must determine
the current step the human is performing so that it may take the
appropriate control action for its own motion.

The human’s current action is termed as an intent. A block diagram
summarizing the HIEVS method, which estimates human intent using
the fusion of arm skeletal tracking and human gaze information, is
shown in Fig. 1. Multiple reaching motion models are developed by
tracking human hand profile data using RGB-D tracking. The accelera-
tion of the human hand profile is modeled using a DNN. The parameters
of the DNN are learned such that the position converges to the object
location, and velocity and acceleration converge to 0 at the object
location. The eye-gaze motion dynamics is developed using a point
attractor dynamics, the parameters of which are learned by solving a
least squares optimization problem. Two VS-IMM filters are used each
for human hand motion and eye gaze motion. For selecting active set
of human hand motion VS-IMM filter, reachable space computation of
human arm is used which uses 4 joints of the human arm. Human visual
span computed using human’s head position, predicted gaze point and
object position is used to compute the active model set for eye-gaze
VS-IMM filter. The posterior model probabilities from two VS-IMM
filters are fused to obtain a fused model probability 𝜇𝐹

𝑖 . The reaching
intention is then estimated by maximizing the fused model probability.
In the following sections, multiple motion modeling, corresponding
training methods, active set estimation method and VS-IMM filters are
described.

3. Motion models

In this section, human hand motion and human eye-gaze motion
models are described in detail.

3.1. Human hand motion

At any given time, the human is assumed to be operating according
to one of 𝑁 models. Let 𝐺 = [𝑔𝑇1 , 𝑔

𝑇
2 ,… , 𝑔𝑇𝑁 ]𝑇 represent the vector of all

𝑁 goal locations. Then, the 𝑖th model 𝑀𝑖 is associated with a single goal
location 𝑔𝑖. Each model is characterized by the motion of the human
hand. The human hand motion associated with the 𝑖th model is given
by
𝑋𝐻 (𝑘 + 1) = 𝑓𝑖(𝑋𝐻 (𝑘)) +𝑊𝐻𝑤1(𝑘) (1)
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Fig. 1. Block diagram summarizing the components of the HIEVS algorithm.

where 𝑋𝐻 (𝑘) = [𝑥𝑇𝐻 (𝑘), 𝑥̇𝑇𝐻 (𝑘), 𝑥̈𝑇𝐻 (𝑘)]𝑇 , 𝑥𝐻 ∈ R3 is the 3D position
of the human hand, 𝑥̇𝐻 ∈ R3 and 𝑥̈𝐻 ∈ R3 are the corresponding
velocities and accelerations, respectively, 𝑊𝐻 = [𝑊1,𝑊2,𝑊3]𝑇 , 𝑊1 =
1
2𝑇

2
𝑠 I3, 𝑊2 = 𝑇𝑠I3, 𝑊3 = I3, 𝑇𝑠 is the sampling time, and 𝑤1 ∼

 (0, 𝑄1) is a Gaussian distributed process noise with zero mean and
known covariance 𝑄1 ∈ R3×3 that represents the model uncertainty in
acceleration update, 𝑓𝑖 ∶ R9 → R9 is given by

𝑓𝑖(𝑋𝐻 (𝑘)) =

⎡

⎢

⎢

⎢

⎣

I3 𝑇𝑠I3
1
2𝑇

2
𝑠 I3

0 I3 𝑇𝑠I3
0 0 0

⎤

⎥

⎥

⎥

⎦

𝑋𝐻 (𝑘) +
⎡

⎢

⎢

⎣

0
0

𝑓𝐻
𝑖 (𝑋𝐻 (𝑘))

⎤

⎥

⎥

⎦

(2)

where 𝑓𝐻
𝑖 ∶ R9 → R3 is a continuously differentiable function

associated with the 𝑖th model. Each function 𝑓𝐻
𝑖 is approximated by

a neural network whose parameters are learned from data collected
during the training phase. The training is performed subject to a
contraction metric which guarantees even with minimal training data,
that predictions made by each 𝑓𝐻

𝑖 converge to the 𝑖th goal location. A
more detailed look at the training method is shown in Section 4. The
noisy measurements of the human’s hand positions are modeled as

𝑧𝐻 (𝑘) = 𝑥𝐻 (𝑘) + 𝜈1(𝑘) (3)

where 𝜈1(𝑘) ∈ R3×3 is a Gaussian distributed measurement noise with
zero mean and known covariance 𝑅1 ∈ R3×3.

3.2. Eye-gaze motion

Let 𝑋𝐸 (𝑘) = [𝑥𝑇𝐸 (𝑘), 𝑥̇
𝑇
𝐸 (𝑘)]

𝑇 ∈ R6 be the state of the eye-gaze
motion, where 𝑥𝐸 ∈ R3 is the 3D gaze-point and 𝑥̇𝐸 ∈ R3 is the corre-
sponding velocity. The evolution of the human’s gaze-point associated
with the 𝑖th model is given by the discretized point attractor dynamics

𝑋𝐸 (𝑘 + 1) =
[

I3 𝑇𝑠I3
−𝐾𝑃 𝑇𝑠I3 (1 −𝐾𝐷𝑇𝑠)I3

]

𝑋𝐸 (𝑘)

+
[

𝟎3
𝐾𝑃 𝑇𝑠𝑔𝑖

]

+
[

𝑊1
𝑊2

]

𝑤2(𝑘) (4)

where 𝐾𝑃 and 𝐾𝐷 are the positive scalar gains learned during the train-
ing phase, and 𝑤2 ∼  (0, 𝑄2) is a Gaussian distributed process noise
with zero mean and known covariance 𝑄 ∈ R3×3 that represents the
3

2

model uncertainty in the acceleration update. The noisy measurements
of the human partner’s eye-gaze positions are modeled as

𝑧𝐸 (𝑘) = 𝑥𝐸 (𝑘) + 𝜈2(𝑘) (5)

where 𝜈2(𝑘) ∈ R3×3 is a Gaussian distributed measurement noise with
zero mean and known covariance 𝑅2 ∈ R3×3.

4. Learning hand motion and eye-gaze motion dynamics

In this section, methods used to learn the parameters of the human
hand motion and eye-gaze motion dynamics are described.

4.1. Human hand motion model learning

The hand motion dynamics model is learned such that the learned
motion model 𝑓𝑖 converge to the goal [𝑔𝑇𝑖 , 𝟎

𝑇
3 , 𝟎

𝑇
3 ]

𝑇 regardless of the
initial condition. Recall that in this paper, human intention is defined
as a motion profile which converges to a single goal location. Thus, it
is required that each EKF associated with the 𝑖th model makes state
predictions which tend toward the 𝑖th goal location.

Consider a set of 𝑁 demonstrations {𝑖}
𝑁
𝑖=1 where {𝑋𝐻 (𝑘)}𝑇𝑘=0

are recorded from time instances 𝑘 = 0 to time 𝑘 = 𝑇 . Note that
these demonstrations represent reaching motions toward various goal
locations when learning DNN approximations of the 𝑓𝐻

𝑖 which is a
component of 𝑓𝑖. The collected trajectories in 𝑖 are each translated
such that they converge to the origin. Let the translated demonstrations
be solutions to the dynamical system governed by the first order
differential equation given in (1).

The function 𝑓𝐻
𝑖 (⋅) is modeled using a neural network of the form

𝑓𝐻
𝑖 (𝑋𝐻 (𝑘)) = 𝑊 𝑇 𝜎(𝑈𝑇 𝑠(𝑘)) + 𝜖(𝑠(𝑘)) (6)

where 𝑠(𝑘) = [𝑋𝐻 (𝑘), 1]𝑇 ∈ R10 is the input vector to the DNN,
𝑈 ∈ R10×𝑛ℎ and 𝑊 ∈ R𝑛ℎ×3 are the input and output bounded
constant weight matrices respectively, 𝜖(𝑠(𝑘)) ∈ R3 is the function
reconstruction error that goes to zero after the DNN is fully trained, 𝑛ℎ
is the number of neurons in the hidden layer of the DNN, 𝜎(𝑈𝑇 𝑠(𝑘)) =
[ 1
1+exp(−(𝑈𝑇 𝑠(𝑘))1)

,… , 1
1+exp(−(𝑈𝑇 𝑠(𝑘))𝑖)

,… , 1
1+exp(−(𝑈𝑇 𝑠(𝑘))𝑛ℎ )

]𝑇 is the vector-
sigmoid activation function and (𝑈𝑇 𝑠(𝑘))𝑖 is the 𝑖th element of the
vector (𝑈𝑇 𝑠(𝑘)).

In order to train a contracting DNN, the contraction analysis for
discrete time systems is used. The constrained optimization problem
to train contracting DNN is given by

{𝑊̂ , 𝑈̂} = arg min
𝑊 ,𝑈

{𝐸𝐷 + 𝜅𝐸𝑊 } (7)

such that
𝜕𝑓𝑇

𝑖
𝜕𝑋𝐻

𝑀𝑘+1
𝜕𝑓𝑖
𝜕𝑋𝐻

−𝑀𝑘 ≤ −𝛾𝑀𝑘, 𝑀𝑘 ≻ 0 (8)

where 𝐸𝐷 =
∑𝑁𝐷

𝑖=1 ‖𝑦𝑖 − 𝑎𝑖‖2, 𝑦𝑖 ∈ R9𝑇×1, 𝑦𝑖 represents the target and
𝑎𝑖 = {𝑋𝐻 (𝑘+ 1)}𝑇𝑘=0 is the output of (2) with 𝑓𝐻

𝑖 approximated using a
DNN in (6) using 𝑖th demonstration, 𝐸𝑊 is the sum of the squares of the
DNN weights, 𝜅 ∈ R+ is a scalar parameter of regularization, 𝛾 ∈ R is
a strictly positive constant, 𝑀𝑘 ∈ R9×9 represents a uniformly positive
definite (PD) contraction metric which is a PD symmetric matrix [29],
and the last three rows of the Jacobian 𝜕𝑓𝑖

𝜕𝑋𝐻
are given by

𝜕𝑓𝐻
𝑖

𝜕𝑋𝐻
= 𝑊 𝑇 𝜕𝜎(𝑈𝑇 𝑠)

𝜕𝑋𝐻
= 𝑊 𝑇 [𝛴′(𝑈𝑇 𝑠)]𝑈𝑇

𝑥 (9)

where for any 𝑏 ∈ R𝑝, 𝛴′(𝑏) ∈ R𝑛ℎ×𝑛ℎ is a diagonal matrix given by

𝛴′(𝑏) = diag(𝜎(𝑏1)(1 − 𝜎(𝑏1)), 𝜎(𝑏2)(1 − 𝜎(𝑏2)),… , 𝜎(𝑏𝑝)(1 − 𝜎(𝑏𝑝))) (10)

and 𝑈𝑥 ∈ R9×𝑛ℎ is a sub-matrix of 𝑈 formed by taking the first 𝑛 rows
of 𝑈 .
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4.2. Eye-gaze motion model learning

Given a set of 𝑁 goal-converging demonstration trajectories con-
sisting of {𝑋𝐸 (𝑘)}𝑇𝑘=0 recorded from time instances 𝑘 = 0 to time 𝑘 = 𝑇 ,
the scalar positive gains are computed by solving the least squares
optimization problem

{𝐾̂𝑃 , 𝐾̂𝐷} = argmin
𝐾

𝑁
∑

𝑗=1

𝑇−1
∑

𝑘=0
‖𝐴𝑗 (𝑘, 𝑘 + 1) − 𝑌 𝑗 (𝑘)𝐾‖

2 (11)

where 𝐴𝑗 (𝑘, 𝑘 + 1) =
𝑥̇𝑗𝐸 (𝑘+1)−𝑥̇

𝑗
𝐸 (𝑘)

𝑇𝑠
, 𝑌 𝑗 (𝑘) =

[(

𝑔𝑗 − 𝑥𝑗𝐸 (𝑘)
)

−𝑥̇𝑗𝐸 (𝑘)
]

and 𝐾 =
[

𝐾𝑃 𝐾𝐷
]𝑇 . The superscript indicates the iteration over the

𝑗th trajectory.

5. Model set augmentation

A key step in the design of VS-IMM filters is the selection of a
method to augment the current model set being considered by the VS-
IMM. This section presents the nomenclature used in rest of the paper to
represent the various model sets and the details of the MSA algorithms
used for each filter.

5.1. Definition of model sets

Model sets are defined as follows:

• 𝑀 = [𝑀1,𝑀2,… ,𝑀𝑁 ] is the complete model set of 𝑁 possi-
ble models. Each model 𝑀𝑖 is associated with a single motion
profile and goal location 𝑔𝑖 where 𝐺 = [𝑔1, 𝑔2,… , 𝑔𝑁 ]. Due to
the definition of human intention in this work and the one-to-
one relationship of models to goal locations, the terms model,
intention, and goal location can be used interchangeably in this
paper

• 𝑀𝐸
𝑎 (𝑘) is the active model set available to the eye-gaze filter at

time 𝑘, which means that the model probabilities of the models
in 𝑀𝐸

𝑎 (𝑘) are non-zero.
• 𝑀𝐸

𝑟 (𝑘) is the inactive model set reserved by the eye-gaze filter at
time 𝑘, which means that the model probabilities of the models
in 𝑀𝐸

𝑟 (𝑘) are zero.
• 𝑀𝐻

𝑎 (𝑘) is the active model set available to the hand motion filter
at time 𝑘, which means that the model probabilities of the models
in 𝑀𝐻

𝑎 (𝑘) are non-zero.
• 𝑀𝐻

𝑟 (𝑘) is the inactive model set reserved by the hand motion filter
at time 𝑘, which means that the model probabilities of the models
in 𝑀𝐻

𝑟 (𝑘) are zero.

At any given instance,

𝑀𝐸
𝑎 (𝑘) ∩𝑀𝐸

𝑟 (𝑘) = 𝑀𝐻
𝑎 (𝑘) ∩𝑀𝐻

𝑟 (𝑘) = ∅

𝑀𝐸
𝑎 (𝑘) ∪𝑀𝐸

𝑟 (𝑘) = 𝑀𝐻
𝑎 (𝑘) ∪𝑀𝐻

𝑟 (𝑘) = 𝑀

In order to utilize the VS-IMM framework, a valid MSA technique must
be chosen. In [30], it is stated that a general MSA approach should
possess the following properties.

1. It provides a general criterion for model activation and termina-
tion. The criterion serves as a general measure of the closeness
between the true mode and the candidate models with different
structures or parameters.

2. It is computationally feasible. The MSA process can be applied
easily with an acceptable computational burden. This property
is especially important for models characterized by continuous
parameters. It requires that the MSA algorithm should provide
a scheme to generate new models from the continuous mode
space.

3. It is independent of filters. This requirement allows the MSA
algorithm to depend only on the models themselves, and thus
can exclude effects of various filters.
4

Fig. 2. The simplified human arm model is shown above. Joints J1 and J2 are not
used in this work. The point S denotes the shoulder position as detected by the Kinect
sensor with the positive directions of the Kinect coordinate system attached.

With the properties above in mind, two MSA algorithms are pro-
posed which use constraints on the human’s reachable workspace to
activate the models 𝑀𝐻

𝑎 available to the hand tracking filter and
the limitations on human peripheral vision to select the models 𝑀𝐸

𝑎
available to the eye-gaze tracking filter.

5.2. Model set augmentation using reachable workspace constraints

The hand motion-tracking VS-IMM filter, which processes the hu-
man’s 3D wrist position data acquired through skeletal tracking, gen-
erates probabilities that any given model in the set 𝑀 is the correct
model at time 𝑘 based on the measured 3D wrist position at time 𝑘.
However, it is unlikely that models corresponding to goal locations
which are not within the human’s reachable workspace are the true
model. Thus, models whose goal locations lie outside of the reachable
workspace need not be considered in the filter.

In [31,32], a method of evaluating a human’s reachable space is
presented which uses a six degree-of-freedom (DoF) model of the hu-
man arm, comprised of six revolute joints, and joint limits of a healthy
subject to determine the region which is reachable by the human’s wrist
relative to their shoulder. By evaluating this region before the onset of
the intention inference process and assuming it to be constant relative
to the shoulder joint, which is also tracked during the process by the
skeletal tracker, the goal locations which lie within the reachable region
can be determined.

In order to estimate the reachable workspace, denoted 𝑤𝑠, the six
DoF human arm model is simplified further to a four DoF model by
eliminating the two DoF that model flexion–extension and abduction–
adduction in the inner shoulder joint and produce minimal effects
in wrist position. The simplified model is shown in Fig. 2 with the
eliminated joints shaded in gray. The elbow joint (𝑞4) is held constant
at 0 degrees while the other three joints (𝑞1, 𝑞2, 𝑞3) are sampled at 100
evenly spaced points between their joint limits in order to obtain the
outer-most possible wrist positions. Due to the anatomical properties
of the arm, bones and muscles, some joint limits are dependent on the
positions of the other joint angles. The joint limits are given as

𝑞1 ∈
[

−9◦, 160◦
]

𝑞2 ∈
[(

−43 +
𝑞1
3

)◦
,
(

153 −
𝑞1
6

)◦]

𝑞3 ∈
[(

−90 +
7𝑞1 −

𝑞2 +
2𝑞1𝑞2

)◦

, (12)

9 9 810
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𝑥

𝑥

𝑐

Fig. 3. The region 𝑤𝑠 calculated using the method described in Section 5.2 overlain
on a simulated human worker in a warehouse scene.

(

60 +
4𝑞1
9

−
5𝑞2
9

+
5𝑞1𝑞2
810

)◦]

The region 𝑤𝑠, shown in Fig. 3 is the volume bounded by the resulting
wrist positions. In each iteration, the active model set available to the
hand-tracking filter is then chosen to be

𝑀𝐻
𝑎 = 𝑤𝑠 ∩ 𝐺 = 𝑤𝑠 ∩𝑀 (13)

5.3. Model set augmentation using human visual span

In the vision literature, the human visual span or the peripheral
span, refers to the region of the visual field from which one can
extract information during an eye fixation [33]. Similar to the method
described in Section 5.2, if a goal location does not lie within the visual
span, it is unlikely to be the true goal location. In [33], a series of
experiments are performed to measure the human visual span during
an object search in real-world scenes. The results show that the average
visual span during an object search is a cone whose aperture has a
radius of about 8 degrees.

Let ⃖⃖⃖⃗𝑣𝑠 be the vector from the position of the human’s eyes, estimated
as 𝑋ℎ𝑒𝑎𝑑 −𝑋𝑔 , where 𝑋ℎ𝑒𝑎𝑑 is the position of the head detected by the
Kinect skeletal tracking in Kinect reference frame and 𝑋𝑔 is the gaze
point computed using the deep network in [34]. Then, for the eye-gaze
filter, the models that are chosen to be active at time 𝑘 are those which
fall within the region 𝑣𝑠 defined with respect to 𝐹𝐾 as the volume of
a cone centered about ⃖⃖⃖⃗𝑣𝑠 with a radius of 8 degrees. That is

𝑀𝐸
𝑎 = 𝑣𝑠 ∩ 𝐺 = 𝑣𝑠 ∩𝑀 (14)

5.4. Addition and removal of active models

Let 𝜇𝐹
𝑖 be a fused model probability obtained from the posterior

model probabilities of human hand motion filter and eye-gaze filter.
When a model which was active in the previous iteration becomes
inactive, its corresponding model probability is set to be zero, and the
filter corresponding to the model is made inactive. That is, if model 𝑀𝑖
with non-zero fused model probability 𝜇𝐹

𝑖 was in the set 𝑀𝐻
𝑎 at time

𝑘− 1, but at time 𝑘 the MSA algorithm has determined that 𝑀𝑖 should
be removed from 𝑀𝐻

𝑎 , then 𝑀𝑖 is added to the set 𝑀𝐻
𝑟 , 𝜇𝐻

𝑖 = 0, and
the 𝑖th filter does not run on the 𝑘th iteration. The same logic holds
true for the eye-gaze filter.

On the other hand, when a model which was previously inactive
to both filters and thus had a model probability 𝜇𝐹

𝑖 = 0 at time 𝑘 − 1
becomes active at time 𝑘, its fused model probability is initialized to
a small threshold value 𝜋 and its associated filter is made active for
5

𝑡ℎ
the 𝑘th iteration. If 𝜔 models which were previously inactive become
active at time 𝑘, then their associated model probabilities are initialized
equally as

𝜇𝐹
𝑖 =

𝜋𝑡ℎ
𝜔

(15)

It is important to reiterate that the initialization described above
needs to be performed if and only if 𝑀𝑖 ∈ 𝑀𝐻

𝑟 and 𝑀𝑖 ∈ 𝑀𝐸
𝑟 during the

previous iteration. Otherwise, the associated fused model probability
will be non-zero. Once a new model is added to 𝑀𝐸

𝑎 or 𝑀𝐻
𝑎 the model

probabilities of all the active models are renormalized.

6. VS-IMM human intention inference algorithm

In this section, the Human Intention Estimator with Variable Struc-
ture (HIEVS) algorithm is presented. The algorithm consists of two
VS-IMM filters running in parallel. One filter processes eye-gaze data in
order to produce an estimate of the eye-gaze point 𝑥̂𝐸 (𝑘) and the set of
posterior model probabilities conditioned on gaze point measurements
associated with each model 𝜇𝐸

𝑖 (𝑘). The other filter processes hand
motion data in order to produce an estimate of the hand position
̂𝐻 (𝑘) and the set of posterior model probabilities conditioned on the
hand position measurements associated with each model 𝜇𝐻

𝑖 (𝑘). The
initial state and covariance for each filter, i.e. 𝑥̂𝐻 (0|0), 𝑃𝐻 (0|0) and
̂𝐸 (0|0), 𝑃𝐸 (0|0), are acquired using the two-point differencing method.
On the first iteration for each filter, the prior model probabilities 𝜇𝐹

𝑗 (0)
are initialized to be uniform across all models in 𝑀 . Subsequent model
probabilities 𝜇𝐹

𝑗 (𝑘) are acquired from the fusion equations defined at
the end of this section.

6.1. Human hand motion filter

The hand position VS-IMM filter is described below.
Interaction/mixing: At the beginning of each iteration, the initial

conditions (state estimate 𝑥̂0𝑗𝐻 (𝑘−1|𝑘−1) and covariance 𝑃 0𝑗
𝐻 (𝑘−1|𝑘−1)),

where superscript 0 denotes initial condition, 𝑗 denotes the number of
the filter, at time 𝑘, are adjusted by mixing the filter outputs from the
previous iteration (time instant 𝑘 − 1) in the following way

𝑥̂0𝑗𝐻 (𝑘 − 1|𝑘 − 1) =
𝑁
∑

𝑖=1
𝑥̂𝑖𝐻 (𝑘 − 1|𝑘 − 1)

× 𝜇𝐹
𝑖|𝑗 (𝑘 − 1|𝑘 − 1), 𝑗 = 1,… , 𝑁 (16)

𝑃 0𝑗
𝐻 (𝑘 − 1|𝑘 − 1) =

𝑁
∑

𝑖=1
𝜇𝐹
𝑖|𝑗 (𝑘 − 1|𝑘 − 1)𝑃 𝑖

𝐻 (𝑘 − 1|𝑘 − 1)

+ [𝑥̂𝑖𝐻 (𝑘 − 1|𝑘 − 1) − 𝑥̂0𝑗𝐻 (𝑘 − 1|𝑘 − 1)] (17)

× [𝑥̂𝑖𝐻 (𝑘 − 1|𝑘 − 1) − 𝑥̂0𝑗𝐻 (𝑘 − 1|𝑘 − 1)]𝑇 ,

𝑗 = 1,… , 𝑁

where 𝑥̂𝑖𝐻 (𝑘 − 1|𝑘 − 1), 𝑃 𝑖
𝐻 (𝑘 − 1|𝑘 − 1) are the state estimate and its

covariance, respectively, corresponding to model 𝑀𝑗 at time 𝑘 − 1 and
𝜇𝐹
𝑖|𝑗 (𝑘 − 1|𝑘 − 1) are the mixing probabilities given by

𝜇𝐹
𝑖|𝑗 (𝑘 − 1|𝑘 − 1) =

𝛱𝑖𝑗𝜇𝐹
𝑖 (𝑘 − 1)
𝑐𝑗

, 𝑖, 𝑗 = 1, 2,… , 𝑁 (18)

where 𝛱𝑖𝑗 = 𝑝(𝑀(𝑘) = 𝑀𝑗 |𝑀(𝑘 − 1) = 𝑀𝑖) is the model transition
or jump probability and 𝜇𝐹

𝑖 (𝑘 − 1) = 𝑝(𝑀𝑖|𝑍1∶𝑘−1
𝐻 , 𝑍1∶𝑘−1

𝐸 ) is the fused
probability of 𝑖th model 𝑀𝑖 being the right model at time 𝑘 − 1 and
𝑗̄ =

∑𝑁
𝑖=1 𝛱𝑖𝑗𝜇𝐹

𝑖 (𝑘 − 1) are the normalizing constants.
Model matched filtering: Once the initial conditions 𝑥̂0𝑗𝐻 (𝑘−1|𝑘−1)

and 𝑃 0𝑗
𝐻 (𝑘− 1|𝑘− 1) are available for each filter, the state estimate and

its covariance for each model are computed using the EKFs matched
to the models. Along with the state estimates and the corresponding
covariances, the likelihood functions 𝛬𝐻

𝑗 (𝑘) are computed using the
mixed initial condition (16) and the corresponding covariance (17).
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The likelihood 𝛬𝐻
𝑗 (𝑘), a Gaussian distribution with the predicted mea-

surement as the mean and the covariance equal to the innovation
covariance, is given by

𝛬𝐻
𝑗 (𝑘) = 𝑝(𝑧𝐻 (𝑘)|𝑀𝑗 (𝑘), 𝑍1∶𝑘−1

𝐻 )

𝛬𝐻
𝑗 (𝑘) =  (𝑧𝐻 (𝑘); 𝑧̂𝑗𝐻 (𝑘|𝑘 − 1; 𝑥̂0𝑗𝐻 (𝑘 − 1|𝑘 − 1)),

𝑆𝑗
𝐻 (𝑘;𝑃 0𝑗

𝐻 (𝑘 − 1|𝑘 − 1))), 𝑗 = 1,… , 𝑁 (19)

where 𝑆𝑗
𝐻 (𝑘;𝑃 0𝑗

𝐻 (𝑘−1|𝑘−1)) is the innovation covariance and 𝑧̂𝑗𝐻 (𝑘|𝑘−
1; 𝑥̂0𝑗𝐻 (𝑘 − 1|𝑘 − 1)) is the 𝑗th filter’s predicted measurement at time 𝑡.

Model probability update: After the likelihood functions of the
models 𝛬𝐻

𝑗 (𝑘) are available, the model posterior probabilities 𝜇𝐻
𝑗 (𝑘) are

calculated as follows

𝜇𝐻
𝑗 (𝑘) = 𝑃 (𝑔𝑗 |𝑍1∶𝑘

𝐻 ) = 𝑃 (𝑀𝑗 (𝑘)|𝑍1∶𝑘
𝐻 )

𝜇𝐻
𝑗 (𝑘) = 𝑝(𝑧𝐻 (𝑘)|𝑀𝑗 (𝑘), 𝑍1∶𝑘−1

𝐻 )𝑃 (𝑀𝑗 (𝑘)|𝑍1∶𝑘−1
𝐻 )

𝜇𝐻
𝑗 (𝑘) =

𝛬𝐻
𝑗 (𝑘)𝑐𝑗

∑𝑁
𝑖=1 𝛬

𝐻
𝑖 (𝑘)𝑐𝑖

, 𝑗 = 1, 2,… ., 𝑁 (20)

6.2. Eye-gaze filter

The eye-gaze VS-IMM filter has a similar form to the hand motion
filter described in Section 6.1.

Interaction/mixing: At the beginning of each iteration, the initial
conditions of the eye-gaze filter (state estimate 𝑥̂0𝑗𝐸 (𝑘 − 1|𝑘 − 1) and
covariance 𝑃 0𝑗

𝐸 (𝑘 − 1|𝑘 − 1)) are adjusted by mixing the filter outputs
from the previous iteration according to

𝑥̂0𝑗𝐸 (𝑘 − 1|𝑘 − 1) =
𝑁
∑

𝑖=1
𝑥̂𝑖𝐸 (𝑘 − 1|𝑘 − 1)

× 𝜇𝐹
𝑖|𝑗 (𝑘 − 1|𝑘 − 1), 𝑗 = 1,… , 𝑁 (21)

𝑃 0𝑗
𝐸 (𝑘 − 1|𝑘 − 1) =

𝑁
∑

𝑖=1
𝜇𝐹
𝑖|𝑗 (𝑘 − 1|𝑘 − 1)𝑃 𝑖

𝐸 (𝑘 − 1|𝑘 − 1)

+ [𝑥̂𝑖𝐸 (𝑘 − 1|𝑘 − 1) − 𝑥̂0𝑗𝐸 (𝑘 − 1|𝑘 − 1)]

× [𝑥̂𝑖𝐸 (𝑘 − 1|𝑘 − 1) − 𝑥̂0𝑗𝐸 (𝑘 − 1|𝑘 − 1)]𝑇

𝑗 = 1,… , 𝑁 (22)

Model matched filtering: Once the initial conditions 𝑥̂0𝑗𝐸 (𝑘−1|𝑘−1)
and 𝑃 0𝑗

𝐸 (𝑘− 1|𝑘− 1) are available for each filter, the state estimate and
its covariance for each model are computed using the KFs matched
to the models. Along with the state estimates and the corresponding
covariances, the likelihood functions 𝛬𝐸

𝑗 (𝑘) are computed using the
mixed initial condition (21) and the corresponding covariance (22). The
likelihood 𝛬𝐸

𝑗 (𝑘) is given by

𝛬𝐸
𝑗 (𝑘) = 𝑝(𝑧𝐸 (𝑘)|𝑀𝑗 (𝑘), 𝑍1∶𝑘−1

𝐸 )

𝛬𝐸
𝑗 (𝑘) =  (𝑧𝐸 (𝑘); 𝑧̂

𝑗
𝐸 (𝑘|𝑘 − 1; 𝑥̂0𝑗𝐸 (𝑘 − 1|𝑘 − 1)),

𝑆𝑗
𝐸 (𝑘;𝑃

0𝑗
𝐸 (𝑘 − 1|𝑘 − 1))), 𝑗 = 1,… , 𝑁 (23)

where 𝑆𝑗
𝐸 (𝑘;𝑃

0𝑗
𝐸 (𝑘−1|𝑘−1)) is the innovation covariance and 𝑧̂𝑗𝐸 (𝑘|𝑘−

1; 𝑥̂0𝑗𝐸 (𝑘 − 1|𝑘 − 1)) is the 𝑗th filter’s predicted measurement at time 𝑡.
Model probability update: After the likelihood functions of the

models 𝛬𝐸
𝑗 (𝑘) are available, the model posterior probabilities 𝜇𝐸

𝑗 (𝑘) are
calculated as follows

𝜇𝐸
𝑗 (𝑘) = 𝑃 (𝑔𝑗 |𝑍1∶𝑘

𝐸 ) = 𝑃 (𝑀𝑗 (𝑘)|𝑍1∶𝑘
𝐸 )

𝜇𝐸
𝑗 (𝑘) = 𝑝(𝑧𝐸 (𝑘)|𝑀𝑗 (𝑘), 𝑍1∶𝑘−1

𝐸 )𝑃 (𝑀𝑗 (𝑘)|𝑍1∶𝑘−1
𝐸 )

𝜇𝐸
𝑗 (𝑘) =

𝛬𝐸
𝑗 (𝑘)𝑐𝑗

∑𝑁
𝑖=1 𝛬

𝐸
𝑖 (𝑘)𝑐𝑖

, 𝑗 = 1, 2,… ., 𝑁 (24)
6

Fig. 4. Detailed block diagram of VS-IMM algorithm used for the HIEVS method.

6.3. Determination of human intention

Once posterior model probabilities are available from both filters,
they are fused using

𝜇𝐹
𝑗 (𝑘) = 𝛼𝑒−𝛽𝑇𝑡𝜇𝐸

𝑗 (𝑘) + (1 − 𝛼𝑒−𝛽𝑇𝑡 )𝜇𝐻
𝑗 (𝑘) (25)

The goal location estimate 𝑔̂(𝑘) is then given by

𝑔̂(𝑘) = arg max
𝑔∈𝑀𝐻

𝑎 ∪𝑀𝐸
𝑎

𝜇𝐹
𝑗 (𝑘) (26)

The optimization problem in (26) is solved by choosing the location
𝑔𝑖 ∈ 𝑀𝐻

𝑎 ∪ 𝑀𝐸
𝑎 corresponding to the model 𝑀𝑖 with the highest

model probability 𝜇𝐹
𝑖 (𝑘) at time 𝑘. The goal location search in (26) is

performed over the union of sets 𝑀𝐻
𝑎 and 𝑀𝐸

𝑎 to consider cases when
these sets have different cardinality or an empty intersection. Fig. 4
summarizes the gaze and motion fusion algorithm in the form of a block
diagram.

7. Experimental evaluation

7.1. Experimental setup

An experiment which simulates an assembly task in a large ware-
house setting is designed to verify the utility the proposed method.
A Microsoft Kinect sensor is placed such that a large workstation is
fully visible. Within the workstation, tools corresponding to 𝑁 = 18 for
experiment 1 and 𝑁 = 13 for experiment 2 models are placed arbitrarily
but at coordinates which are known to the algorithm a priori with
respect to the Kinect reference frame. During this process, the Kinect
sensor records 3D skeletal tracking data and RGB images. The CNN
architecture, presented in [34], is used to predict the 3D gaze point of
the human. The input to the neural network is an RGB image obtained
from the Kinect, the pixel location of the head and a cropped head
image obtained from the 3D skeletal tracking. The cropped head image
is obtained using the Viola–Jones face detector. The CNN consists of a
head condition branch and a scene branch, each consisting of a ResNet-
50 CNN followed by an additional residual pooling layer. The output
of these two branches is merged using a two-layer encode module and
is input to a recurrent attention prediction module which consists of
a Convolutional-LSTM network followed by four deconvolution layers
to predict a full-sized heatmap. The final 3D gaze point of the human
is then computed using this heatmap. The CNN is trained on the
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Fig. 5. Two RGB images taken from the Kinect sensor corresponding to frames 10 and
105. The images have been overlain with bounding boxes around the face and a vector
from the face to the predicted gaze point.

Fig. 6. The human gaze point tracked by the HIEVS algorithm is shown in dotted red.
The measurements, in solid blue, are acquired by passing the RGB images collect by
the Kinect sensor through a deep network for gaze point prediction.

VideoAttentionTarget dataset created specifically by the authors for the
task of 3D gaze point prediction in video sequences. An example of the
output of the network is shown in Fig. 5. The algorithm is run using
MATLAB 2020b on an Intel i7 processor computer with 8 cores and 32
GB RAM. Two NVIDIA RTX 2080 GPUs are used for the inference of
deep learning algorithm.

The DNN model in Section 4.1 uses a single-layer contracting NN
with 15 neurons. 𝑁 = 5 are used to train the DNN model with each
trajectory containing 500 data points sampled at 30 Hz. The data is
collected using Kinect sensor tracking human skeleton. The accuracy of
the learned DNN model was comparable to the DNN model from our
prior work presented in [22]. For the eye-gaze model in Section 4.2,
𝑁 = 3 trajectories are used to train the model containing 500 data
points sampled at 30 Hz. The 3D gaze point generated by the CNN is
used for training the eye-gaze model.

Since the algorithm uses IMM filters, disturbances like process noise
and measurement noise can be accounted for by selecting appropriate
state and measurement covariance matrices. In the formulation, the
process noise can be due to human hand and eye-gaze model learning
errors and the measurement noise is due to the uncertainties from the
CNN gaze-point predictions and Kinect skeletal tracking.

7.2. Experiment 1

In this experiment, in order to model the assembly of components,
the human chooses and reaches for any two objects which are not
adjacent to one another in sequence. The results of experiment 1
show that the HIEVS algorithm successfully tracks hand and gaze point
motion and can correctly predict the human’s intention in both stages
7

Fig. 7. Human hand motion tracked by the HIEVS algorithm is shown in dotted red.
The hand motion data is acquired via the Kinect sensor’s skeletal tracking feature.

Fig. 8. The evolution of the fused model probabilities associated with the 𝑁 models.
The vertical dotted black line denotes the change in true intention.

of the sequence. The gaze point and hand motion tracked by HIEVS are
shown in Figs. 6 and 7, respectively. Fig. 8 shows the evolution of the
model probabilities matched to each of the 𝑁 = 18 goal locations. It
can be seen in Fig. 6 that the subject’s gaze is fixated on the first goal
location, corresponding to 𝑀7, from time 𝑡 = 0 s until about 𝑡 = 1.8 s at
which point it begins to shift to the second goal location. The saccade
to the second goal, 𝑀1, takes about 0.2 s and the gaze remains fixated
on this point for the remainder of the trail. Fig. 7 shows that the hand
does not start moving toward 𝑀1 until 𝑡 = 2.6 s, nearly a full second
after the gaze has shifted. This occurrence is accounted for in the fusion
of the posterior model probabilities in (25) by the parameters 𝛼 and
𝛽 which were set to be 0.5 and 1, respectively. This means that, at
first, both 𝜇𝐸 and 𝜇𝐻 are weighed equally, but as time goes on, 𝜇𝐻

begins to hold more weight. This is observed in Fig. 8 where the dotted
red line dips. New models are activated at 𝑡 = 1.8 s because the gaze
point shifts. However, because the hand stays in the same location,
and its weight is increasing over time, the associated model probability
continues increasing. When the hand location shifts around 2.8 s, the
algorithm quickly recognizes a change in intention, predicting 𝑀1 to
the most likely model at about 3.2 s, which is 0.7 s before the hand
reaches the associated goal location, 𝑔 .
1
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Fig. 9. Sequence of images showing the progression of the estimated gaze point by the deep learning method and the estimated human intent by the HIEVS algorithm. The
estimated human intent is marked using the red bounding box, the gaze point is marked by the green * marker, the active set of hand models 𝑀𝐻

𝑎 are marked by yellow circles
and the active set of gaze models 𝑀𝐸

𝑎 are marked by the green bounding boxes. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
Fig. 10. The human gaze point tracked by the HIEVS algorithm is shown in dotted
red. The measurements, in solid blue, are acquired by passing the RGB images collect
by the Kinect sensor through a deep network for gaze point prediction. At 𝑡 = 4.43 s
the set 𝑀𝐸

𝑎 is empty and hence the gaze IMM is not used.

7.3. Experiment 2

The objective of this experiment is to test the algorithm’s perfor-
mance when certain objects are placed close to each other. For this
experiment, 𝑁 = 13 objects are placed in three separate clusters. The
objects in each cluster are placed very close to one another with the
closest distance as small as 7.5 cm. A test trajectory of human hand
reaching motion is used to test the intention estimation using HIEVS
algorithm for a ground truth goal reaching motion of hand reaching
object number 8 as shown in Fig. 9 at 𝑡 = 6.33 s. It is important to
note that the objects are modeled by a point and the distance between
any two objects is the distance between these two points. The values of
the parameters 𝛼 and 𝛽 used for fusing posterior model probabilities
are set to 0.7 and 0.2 respectively. Fig. 9 shows the progression of
the estimated human intent using HIEVS algorithm. The gaze point
and hand motion tracked by HIEVS are shown in Figs. 10 and 11,
respectively. At 𝑡 = 4.43 s the deep learning algorithm fails to detect
the human gaze correctly which leads to the active model set 𝑀𝐸

𝑎
being empty. Since the active model set 𝑀𝐸

𝑎 is empty, the prediction
of 𝑔̂(𝑘) in (26) is obtained from the set 𝑀𝐻

𝑎 . This can be visualized
in the gaze IMM filter output shown in Fig. 10. The true intention of
8

Fig. 11. Human hand motion tracked by the HIEVS algorithm is shown in dotted red.
The hand motion data is acquired via the Kinect sensor’s skeletal tracking feature.

the human is correctly estimated by the HIEVS algorithm at 𝑡 = 6.33 s
as shown in Fig. 9 for a trajectory of length 8 s. Since the objects are
very closely placed, the fused posterior model probabilities for objects 7
(blue block), 8 (yellow block) and 9 (red block with yellow circle) are
comparable. At 𝑡 = 6.33, the fused posterior model probability value
for object 8 is 0.26, while for objects 7 and 9 the fused probabilities are
0.25 and 0.20, respectively. The model with highest posterior model
probability is selected as the reaching intention, i.e., model for object
8. At 𝑡 = 8 s, the objects 7, 8, 9 have fused probability values 0.25,
0.26, 0.22, respectively, as shown in Fig. 12. The algorithm correctly
estimates the true intention when the human hand is sufficiently close
to the true intention.

8. Conclusion

This paper proposes a novel framework for human intention esti-
mation. The algorithm presented, called Human Intention Estimator
with Variable Structure (HIEVS), uses two VS-IMM filters running in
parallel, one which processes human hand motion data and another
which acts on human gaze-point data, and fuses the posterior model
probabilities generated by each filter in order to determine a human’s
action intention. Dynamical models of the human’s hand motion and
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Fig. 12. The evolution of the fused model probabilities associated with the 𝑁 = 13
models with model 8 being the true intention.

eye-gaze motion are learned in an initial training phase. Novel MSA
algorithms are used for active model set selection. The MSA algorithm
for the hand motion filter uses reachable workspace computation of
the human arm to compute reachable active sets. Likewise, the MSA
algorithm for the eye-gaze filter uses visual span to compute active
model set. Two experiments are conducted which show that the HIEVS
algorithm is capable of estimating predictions of human intention when
there are large number of objects to select from and when the objects
are placed very close to each other. The experiments also reveal that
the HIEVS algorithm can predict correct intention when the human user
changes the eye-gaze for a second. In future, applicability of the method
when the object are moving will be studied.
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