
Autonomous Robots (2019) 43:897–912
https://doi.org/10.1007/s10514-018-9758-x

Learning position and orientation dynamics from demonstrations via
contraction analysis

Harish chaandar Ravichandar1 · Ashwin Dani2

Received: 1 January 2017 / Accepted: 18 April 2018 / Published online: 2 May 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
This paper presents a unified framework of model-learning algorithms, called contracting dynamical system primitives
(CDSP), that can be used to learn pose (i.e., position and orientation) dynamics of point-to-point motions from demonstra-
tions. The position and the orientation (represented using quaternions) trajectories are modeled as two separate autonomous
nonlinear dynamical systems. The special constraints of the S3 manifold are enforced in the formulation of the system that
models the orientation dynamics. To capture the variability in the demonstrations, the dynamical systems are estimated using
Gaussian mixture models (GMMs). The parameters of the GMMs are learned subject to the constraints derived using par-
tial contraction analysis. The learned models’ reproductions are shown to accurately reproduce the demonstrations and are
guaranteed to converge to the desired goal location. Experimental results illustrate the CDSP algorithm’s ability to accurately
learn position and orientation dynamics and the utility of the learned models in path generation for a Baxter robot arm. The
CDSP algorithm is evaluated on a publicly available dataset and a synthetic dataset, and is shown to have the lowest and
comparable average reproduction errors when compared to state-of-the-art imitation learning algorithms.

Keywords Learning from demonstration · Gaussian mixture models · Contraction analysis · Model learning

1 Introduction

Learning from demonstration (LfD) (Wang et al. 2014; Bil-
lard and Matarić 2001; Khansari-Zadeh and Billard 2011;
Gribovskaya et al. 2010; Schaal 1999; Ijspeert et al. 2002)
is a paradigm for training robots using demonstrations of a
task. For developing a robot assistant, the robot should be
given an ability to learn motion plans from the task demon-
strations shown by the user. For example, in a manufacturing
context, a non-expert programmer should be able to program

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10514-018-9758-x) contains supplementary
material, which is available to authorized users.

B Ashwin Dani
ashwin.dani@uconn.edu

Harish chaandar Ravichandar
harish.ravichandar@uconn.edu

1 Department of Electrical and Computer Engineering,
University of Connecticut, Storrs, CT 06269, USA

2 Department of Electrical and Computer Engineering
Management and Engineering for Manufacturing Program,
University of Connecticut, Storrs, CT 06269, USA

the robot by demonstrating the task to the robot (Rossano
et al. 2013; Ravichandar and Dani 2015; Ravichandar et al.
2016, 2017; Koenig and Matarić 2016), or in the case of
robots assisting the elderly, the user should be able to teach
the robots various tasks without significant effort (Ravichan-
dar and Dani 2016). In many tasks, such as carrying water in
a bottle and pouring it into a cup, and part assembly in man-
ufacturing, learning in both position and orientation space
is necessary. Successful reproduction of such tasks require
accurately reproducing end-effector pose (i.e., position and
orientation) paths and achieving a desired end-effector goal
pose. In this paper, a method called contracting dynamical
system primitive (CDSP) is developed to learn position and
the orientation dynamics of complex end-effector paths from
demonstrations.

In this paper, the position trajectories are modeled using
an autonomous dynamical system (DS) ẋ (t) = f (x (t)),
where x (t) denotes the position at time t , and f (·) is esti-
mated using aGaussianmixturemodel (GMM). The problem
of learning position dynamics is formulated as a parameter
learning problem with constraints derived from partial con-
traction analysis of nonlinear systems (Lohmiller and Slotine
1998; Wang and Slotine 2005). Details of contraction and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-018-9758-x&domain=pdf
http://orcid.org/0000-0002-6635-2637
http://orcid.org/0000-0002-7091-5607
https://doi.org/10.1007/s10514-018-9758-x

898 Autonomous Robots (2019) 43:897–912

Fig. 1 Left: Model learned without constraints could result in tar-
get overshoot and diverging trajectories. Right: Model learned under
constraints derived based on partial contraction analysis provides
guaranteed convergence to the goal location. For both models, demon-
strations (solid red), reproductions (dashed blue), streamlines (solid
gray), and the desired goal location (asterisk) are shown (Color figure
online)

partial contraction analyses are provided in Sect. 2.Due to the
constraints developed using partial contraction analysis, the
CDSP algorithm is able to accurately reproduce the demon-
strations and guarantee that the trajectories generated by the
learned model converge to the goal location from any initial
condition (see an example in Fig. 1). As shown in Fig. 1,
learning motion models without constraints might result in
target overshoots, and diverging trajectories. TheCDSPalgo-
rithm can accuratelymodel a wide class ofmotions including
complex shapes, such as the SharpC, L-shape, J-shape and
Snake from the LASA dataset (Khansari-Zadeh and Billard
2011).

For learningorientationdynamics quaternionparametriza-
tion is used. To guarantee that the generated quaternion
trajectory retains its membership to S

3, the angular velocity
dynamics are learned from the demonstrations. The angular
velocity trajectory generated from the learned model is used
to recreate the quaternion trajectory basedon standard quater-
nion dynamics: q̇ = 1

2�(ω) q, where q ∈ S
3 is the quater-

nion orientation,� (ω (t)) =
[−[ω(t)]× ω(t)

−ω(t)T 0

]
, and [ω (t)]× ∈

R
3×3 is a skew-symmetric matrix formed with the angu-

lar velocity vector ω (t) at time t . The system modeling the
angular velocity dynamics is a function of the current angu-
lar velocity, the current quaternion, and the goal quaternion.
Similar to the learning algorithm for position dynamics, the
parameter learning algorithm for orientation dynamics is sub-
ject to constraints derived using partial contraction analysis.

Constrained optimization problems are formulated to
learn the parameters of the GMMs used to estimate the
motion dynamics. The cost is chosen to be the mean squared
error between the demonstrations and the reproductions gen-
erated by the trained models. Partial contraction analysis
yields constraints that are matrix inequality conditions on
the model parameters. The constrained optimization prob-
lems are solved using the Sequential Quadratic Programming

Fig. 2 Block diagram representation of the CDSP algorithm for learn-
ing position and orientation dynamics of point-to-point motions from
demonstrations

(SQP) algorithm. Initial estimates of the parameters of the
GMM are obtained using the expectation–maximization (E–
M) algorithm (Dempster et al. 1977). Detailed experimental
evaluations of the CDSP algorithm, illustrating its ability to
accurately learn both position and orientation dynamics, are
provided in Sect. 5. In Fig. 2, a block diagram describing the
overall workflow of the CDSP algorithm is shown.

The contributions of this work are summarized below:

1. To the best of our knowledge, this is the first method that
can learn a dynamical system in state-space from demon-
strations subject to convergence constraints derived by
using partial contraction analysis. The dynamical system
is approximated by using a GMM and partial contraction
theory is used to learn the GMM parameters, such that
the reproductions, both, closely resemble the demonstra-
tions, and are guaranteed to converge to the desired goal
location from any initial condition.

2. The partial contraction-based model learning algorithm
is derived to learn orientation dynamics. The orienta-
tion is parametrized using the quaternion representation.
The learned model not only generates quaternion trajec-
tories that faithfully reproduce the demonstrations, but
also guarantee the retention of their membership to the
S
3 manifold.

Compared to our earlier work, presented in Ravichan-
dar and Dani (2015) and Ravichandar et al. (2016), the
current paper presents (1) a constrained learning algorithm
that can learn a wider range of point-to-point motions, (2) a
unified framework to learn pose (i.e., position and orienta-
tion) dynamics, (3) thorough experimental evaluations and
comparisons with the state-of-the-art algorithms including
statistical analyses, and (4) demonstration of three different

123

Autonomous Robots (2019) 43:897–912 899

tasks on a Baxter robot using models learned from demon-
strations collected from the robot.

1.1 Related work

LfD is a widely used approach for imitation learning, in
which a new task or skill is learned from demonstrations
provided by humans [see Argall et al. (2009) for a compre-
hensive review]. One way to accomplish this is to directly
learn the control policy or the dynamics involved in the task
of interest from the available demonstrations (Ijspeert et al.
2013; Khansari-Zadeh and Billard 2011; Calinon et al. 2014;
Lemme et al. 2013; Saunders et al. 2006; Jenkins et al. 2000).
Methods that use such a direct approach can further be cate-
gorized into: (a) methods that classify the current state of the
robot into any one of the finite number of available control
actions (Saunders et al. 2006; Jenkins et al. 2000; Langsfeld
et al. 2014), and (b) methods that use regression to either
approximate the mapping between the state space and the
control action space or learn dynamical systems that rep-
resent task primitives (Ijspeert et al. 2013; Khansari-Zadeh
and Billard 2011; Calinon et al. 2014; Lemme et al. 2013;
Ravichandar and Dani 2015; Ravichandar et al. 2016).

Another popular technique for LfD is reinforcement learn-
ing (RL) (Sutton and Barto 1998; Peters and Schaal 2008;
Kober et al. 2013). Methods based on RL maximize a pre-
defined reward function to obtain the optimal control policy.
A particular variant of the standard RL approach, in which
the reward function is learned from the demonstrations, is
called inverse optimal control (IOC) or inverse reinforce-
ment learning (IRL) (Todorov and Jordan 2002; Abbeel and
Ng 2004; Laumond et al. 2014; Priess 2014; Laumond et al.
2015). RL-based approaches typically require the system
to explore the state space, which can be difficult for many
applications. Methods that directly learn the control pol-
icy or dynamics from demonstrations are more practical in
such settings. In Schaal et al. (2007), a comparison between
dynamical system-based methods and optimal control meth-
ods is provided. Other categories of LfD methods include
sampling-based methods (e.g., Bowen and Alterovitz 2014),
optimization-based approaches (e.g., Dragan et al. 2015;
Zucker et al. 2013), geometric methods (e.g., Ahmadzadeh
et al. 2017), and key-frame-basedmethods (e.g., Akgun et al.
2012).

The algorithm proposed in this paper falls under the cat-
egory of dynamical system-based LfD. Dynamical system
(DS)-based LfD methods have received a lot of attention in
the recent past. Methods using time-invariant stable dynam-
ical systems, including CDSP, can instantaneously adapt to
sudden spatial perturbations and changes in goal location
during path generation without the need for re-planning. Fur-
thermore, a single dynamical system can encode motions
that converge to a single goal location, but represent differ-

ent dynamics in different regions of the state-space. One of
the first DS-based frameworks, called the dynamic move-
ment primitives (DMPs) (Schaal 1999; Ijspeert et al. 2002;
Kalakrishnan et al. 2012; Ijspeert et al. 2013; Rai 2014),
uses a stable DS containing a linear proportional derivative
(PD)-like term coupled with a nonlinear term for encoding
a desired trajectory. These two terms are coupled through a
so-called phase variable. Tasks, such as drumming (Ude et al.
2010), pouring (Nemec et al. 2009), and pick and place have
been recreated using DMPs on various robotic platforms.
The DMP formulation, however, models multi-dimensional
systems by learning one DS for each dimension separately,
thereby neglecting the combined effect of all the dimensions.
The idea of movement primitives is extended to probabilistic
framework in Paraschos (2013). In Calinon et al. (2014)),
task-parametrized GMMs (TP-GMM) are used to design
control policies formotion generation through generalization
of available demonstration. However, the algorithm in Cali-
non et al. (2014) does not provide any stability guarantees for
the learned DS. An algorithm to encode motion dynamics by
using neurally imprinted vector fields (NiVF) is presented in
Lemme et al. (2013). The stability of the learnedmodel is ver-
ified using constraints derived through Lyapunov analysis.
The NiVF algorithm restricts the neural network (NN) learn-
ing process to an approach called extreme learning machines
(ELM). While NiVF is shown to be capable of learning a
variety of motions, the stability property is restricted to finite
regions of the state space.

An LfD method, called stable estimator of dynamical
systems (SEDS), that learns globally stable DSs directly
in higher dimensional state-space using GMMs is devel-
oped in Khansari-Zadeh and Billard (2010), Gribovskaya
et al. (2010) and Khansari-Zadeh and Billard (2011). To
keep the attractor properties of the synthesized DS, Lya-
punov stability conditions are used to learn the parameters
of GMMs, ensuring asymptotic stability of the goal loca-
tion. An important limitation of SEDS is that a quadratic
Lyapunov function (V = xT x) is used in the development of
stability constraints. Thus, SEDS can only model trajectories
whose 2-norm distances to the target decreasemonotonically
in time. In Khansari-Zadeh and Billard (2014), an approach
called Control Lyapunov Function-based Dynamic Move-
ments (CLF-DM) is introduced. This approach parametrizes
the energy function using either a weighted sum of asym-
metric quadratic functions (WSAQF) or a neurally imprinted
Lyapunov candidate (NILC). The parameters of theWSAQF
or theNILCare learned from the demonstrations. The learned
energy function is used during run time to ensure global sta-
bility of the generated trajectories.While it can encode awide
variety ofmotions,CLF-DMsuffers from the disadvantage of
the online correction signal potentially interfering with the
learned DS. More specifically, as pointed out in Neumann
and Steil (2015), CLF-DM has the disadvantage of solving

123

900 Autonomous Robots (2019) 43:897–912

a separate optimization problem for parameter selection of
the control Lyapunov function, which can lead to numerical
stability issues in parameter selection. In Neumann and Steil
(2015), an algorithm called τ -SEDS is introduced, which
uses diffeomorphic transformations along with the SEDS
algorithm to generalize the class of motions that can be
learned. The diffeomorphic transformation is used to trans-
form the task space such that the transformed demonstrations
are consistentwith a quadraticLyapunov function, andhence,
SEDS can be used to learn the dynamics in the transformed
space. The learned system is then back-transformed to the
original task space.

In contrast, the CDSP algorithm is capable of encoding
a wider class of motions whose 2-norm distances to the tar-
get do not necessarily decrease monotonically in time. This
is achieved by enforcing novel partial contraction analysis-
based constraints (Wang and Slotine 2005). The enforcement
of these partial contraction constraints guarantees that the
trajectories of the learned system converge to a specific tra-
jectory, which is chosen as the equilibriumpoint in this paper.
It is seen that the enforcement of the partial contraction con-
straints improves the learning accuracy of complex shapes,
such as SharpC, L-shape, J-shape, and Snake from the LASA
dataset (Khansari-Zadeh and Billard 2011).

While the SEDS, NILC, τ -SEDS, and CLF-DM algo-
rithms can learn a wide variety of position dynamics, they
have not been demonstrated and tested for learning orienta-
tion dynamics. In contrast, a unified framework is presented
in our paper to encode pose (i.e., position and orientation)
dynamics. Indeed, encoding several tasks, such as wire inser-
tion, parts assembly, complex object manipulation, and pour-
ing liquids, requires both position and orientation dynamics
of the end-effector in the task-space to be learned from
demonstrations. Furthermore, a thorough evaluation and
comparison of the CDSP algorithm with SEDS, CLF-DM,
NiVF, and τ -SEDS algorithms are presented in Sect. 5.1. The
results indicate that the CDSP algorithm shows a statistically
significantly better performance on the LASA handwriting
dataset in terms of shape reproduction accuracy when com-
pared to rest of the algorithms evaluated on the dataset.

State-of-the-art algorithms that encodeorientationdynam-
ics include Silvério et al. (2015), Pastor et al. (2009), andUde
et al. (2014). The algorithm presented in Silvério et al. (2015)
learns the pose dynamics involved in bi-manualmanipulation
tasks in a task-parametrized manner. In Pastor et al. (2009),
the DMP framework is extended to control the gripper orien-
tation and finger position by encoding the dynamics of each
degree-of-freedom using a separate DMP. While the algo-
rithms in Silvério et al. (2015), and Pastor et al. (2009), are
shown to be capable of encoding complex pose dynamics
in the task-space, they do not take into account the special
constraints of the S

3 manifold in the learned model, and
thus, require post-reproduction normalization steps. Simi-

lar to the CDSP algorithm, a modified DMP formulation,
introduced in Ude et al. (2014), addresses this drawback by
taking the constraints of the S3 manifold into consideration.
A disadvantage of the framework in Ude et al. (2014) is
that the parameters of the DMP have to be carefully tuned
for each task to be learned. In contrast, the CDSP frame-
work learns its parameters directly from the demonstrations.
Experimental evaluations of the CDSP algorithm and its
comparisons with the orientation-DMP (ODMP) (Ude et al.
2014), SEDS (Khansari-Zadeh and Billard 2011), and CLF-
DM (Khansari-Zadeh and Billard 2014) algorithms, in terms
of learning orientation dynamics, are presented in Sect. 5.2.
The comparison results indicate that the CDSP algorithm
results in the lowest average orientation reproduction error.

2 Preliminaries

2.1 Brief review of contraction analysis

In this section, contraction analysis (Lohmiller and Slotine
1998) for analyzing exponential stability of nonlinear sys-
tems is briefly reviewed. Consider a nonlinear, autonomous
system of the form

ẋ (t) = f (x (t)) (1)

where x (t) ∈ R
d is a state vector and f :Rd → R

d is
a continuously differentiable nonlinear function. With the
assumed properties of (1), the exact relation δ ẋ = ∂ f (x(t))

∂x δx
holds, where δx is an infinitesimal virtual displacement
in fixed time. The squared virtual displacement between
two trajectories of (1) in a symmetric, uniformly positive
definite contraction metric M (x) ∈ R

d×d is given by
δxT M (x (t)) δx and its time derivative by

d

dt

(
δxT M (x (t)) δx

)
= δxT

(
∂ f

∂x

T

M (x (t))

+ Ṁ (x (t)) +M (x (t))
∂ f

∂x

)
δx.

(2)

Definition 1 Given the autonomous DS ẋ (t) = f (x (t))
and a contraction metric M(x (t)), that is a uniformly pos-
itive definite symmetric matrix, if the system satisfies the

condition, ∂ f
∂x

T
M (x (t)) + Ṁ (x (t)) + M (x (t)) ∂ f

∂x ≤
−γcM (x (t)) , ∀x for a strictly positive constant γc, then
the system is said to be globally contracting with respect to
x (Lohmiller and Slotine 1998).

Theorem 1 If the autonomous system ẋ (t) = f (x (t)) is
globally contracting with respect to x, then all of its trajec-
tories converge to each other exponentially.

123

Autonomous Robots (2019) 43:897–912 901

Proof See Lohmiller and Slotine (1998, Theorem 2). ��

2.2 Brief review of partial contraction analysis

Consider the nonlinear autonomous system1

ẋ (t) = f (x (t) , x (t)) (3)

and an auxiliary system of the form

ẏ (t) = f (x (t) , y (t)) (4)

where x (t) ∈ R
d and y (t) ∈ R

d are the state vectors and
f :Rd ×R

d → R
d is a continuously differentiable nonlinear

function. Note that for y (t) = x (t), the auxiliary system in
(4) reduces to the system in (3). Hence, y (t) = x (t) is a
particular solution of the auxiliary system in (4).

Definition 2 If the auxiliary y-system in (4) is contract-
ing with respect to y according to Definition 1 (i.e.,
∂ f
∂ y

T
M (y (t))+ Ṁ (y (t))+M (y (t)) ∂ f

∂ y ≤ −γcM (y (t)) ,

∀ y), the original x-system in (3) is said to be partially con-
tracting (Dani et al. 2015; Wang and Slotine 2005).

Theorem 2 If the auxiliary y-system is contracting with
respect to y and any of its particular solutions verifies a
smooth specific property (for instance, convergence to an
equilibrium point), then all the trajectories of the partially
contracting original x-system verify this property exponen-
tially (Wang and Slotine 2005, Theorem 1).

Proof See Wang and Slotine (2005, Theorem 1). ��
Remark 1 A smooth specific property of a trajectory may
denote a trajectory converging to an equilibrium point or a
manifold.

2.3 Brief review of quaternion parametrization on
S
3

In order to learn orientation dynamics, it is necessary to
parametrize the SO (3) manifold. While there are many
parametrizations, such as Euler angles and angle-axis, they
suffer from the well-known disadvantage of singularity
(Corke 2011).Quaternion parametrization, on the other hand,
is a viable option that is non-minimal and singularity-free.
Following the notation used in Ude et al. (2014), let the unit
quaternion q ∈ S

3, where S3 is the unit hypershpere of R4,
be given by

q �
[
v

u

]
=

⎡
⎣ cos

(
φ
2

)

sin
(

φ
2

)
n

⎤
⎦ (5)

1 Following the notation in partial contraction analysis literature (Wang
and Slotine 2005), x (t) is written twice to represent the dependency of
x (t) in multiple places in f (·).

where v ∈ R, u ∈ R
3, φ and n are the angle and normal-

ized axis of rotation in the angle-axis representation. Given a

quaternion q = [
v, uT

]T
, a conjugate quaternion is defined

as q̄ (t) = [
v, −uT

]T
. The product of two quaternions,

q1 ∗ q2, is seen as the coordinate frame whose orientation is
described by q2 undergoing a rotation described by q1. The
quaternion product is defined as

q1 ∗ q2 �
[

v1 + v2 − uT1 u2
v2u2 + v2u1 + u1 × u2

]
. (6)

2.4 Brief review of dynamics represented using
Gaussianmixture models

Approximating a continuously differentiable function f (·),
in an autonomous DS ẋ = f (x), using a GMM involves
approximating the joint density of x ∈ R

d and ẋ ∈ R
d

using a finite mixture of Gaussian functions. The parame-
ters of the kth Gaussian of a GMM will include the prior

πk ∈ [0, 1]; the mean μk =
[(

μk
x
)T

,
(
μk
ẋ

)T]T ∈ R
2d

where μk
x ∈ R

d and μk
ẋ ∈ R

d are the mean vectors
associated with x and ẋ, respectively; and the covariance

Σk =
[

Σk
x Σk

xẋ
Σk

ẋx Σk
ẋ

]
∈ R

2d×2d where Σk
x ∈ R

d×d and

Σk
xẋ ∈ R

d×d are the covariance matrices associated with x
and ẋ, respectively, andΣk

xẋ ∈ R
d×d is the cross-covariance

matrix between x and ẋ. Given a set of N demonstrations,
denoted by {xn(t), ẋn (t)}t=Tn

t=0 , ∀n = 1, 2, .., N , each pair
{xn (t) , ẋn (t)} is assumed to be sampled from the following
density function

P (xn (t) , ẋn (t) ; θ) =
K∑

k=1

P (k)P (xn (t) , ẋn (t) |k)

for t ∈ {0, .., Tn} and n = 1, .., N , where K is the number of
Gaussian functions, θ={μ1 . . . μK ,Σ1 . . . 	K , π1 . . . πK }
is the set of parameters of the GMM,P (k) = πk denotes the
prior andP (xn (t) , ẋn (t) |k) is the conditional joint density
of xn (t) and ẋn (t) given by

P (xn (t) , ẋn (t) |k) = N
([

xn (t)
ẋn (t)

]
;μk,Σk

)

where N (·) denotes the Gaussian function. Now, the esti-
mate of the state derivative, ẋ, is given by expected value
of the posterior density P (ẋn (t) |xn (t)) as follows (Cohn
et al. 1996; Khansari-Zadeh and Billard 2011)

123

902 Autonomous Robots (2019) 43:897–912

ẋ =
K∑

k=1

P (k)P (x|k)∑K
i=1 P (i)P (x|i)

(
μk
ẋ

+ Σk
ẋx

(
Σk

x

)−1 (
x − μk

x

))
.

3 Learning position dynamics from
demonstrations

Consider a state variable x (t) ∈ R
d at time t that repre-

sents the position of a point in d-dimensions. Let a set of Np

demonstrations of a point-to-point motion be solutions to the
following DS

ẋ (t) = f p (x (t) , x (t)) (7)

where f p : Rd × R
d → R

d is a nonlinear continuously dif-
ferentiable autonomous function that models the position
dynamics. Each demonstration corresponds to a reaching
motion ending at x∗ = g p, where g p ∈ R

d is the goal loca-
tion. The nth demonstration consists of the trajectories of the
states {xn(t)}t=Tn

t=0 , and the trajectories of the state derivatives

{ẋn (t)}t=Tn
t=0 .

Remark 2 In the case of point-to-point motions, the position
trajectories start from various initial locations and end at the
final goal location. If the recorder trajectories do not end
precisely at the goal location, they can be translated. Addi-
tionally, the velocity and acceleration are zero at the goal
location.

3.1 Encoding position dynamics using contracting
GMMs

Similar to Khansari-Zadeh and Billard (2014), the nonlinear
function f p (·) defined in (7) is modeled using a GMM and
the resulting autonomous DS is given by2

ẋ (t) =
Kp∑
k=1

hkp (x (t))
(
Ak
px (t) + bkp

)

= f p (x (t) , x (t)) (8)

where hkp (x) = P(k)P(x|k)∑Kp
i=1 P(i)P(x|i)

is the scalar weight asso-

ciated with the kth Gaussian, such that 0 ≤ hkp (x) ≤ 1

and
∑Kp

k=1 h
k
p (x) = 1,P (k) = πk

p is the prior probabil-

ity, Ak
p (x) = Σk

ẋx

(
Σk

x
)−1

, bkp = μk
ẋ − Ak

pμ
k
x,μ

k
p =

[(
μk
x
)T

,
(
μk
ẋ

)T]T
and Σk

p =
[

Σk
x Σk

xẋ
Σk

ẋx Σk
ẋ

]
are the mean

2 In f p (x (t) , x (t)), the first argument refers to the x (t) in h p (·) and
the second argument refers to the x (t) in the affine part of f p (·).

and the covariance of the kth Gaussian, respectively. Given
a set of Np demonstrations, this paper addresses the prob-
lem of learning the function f p (·), which is modeled using a
GMM, under constraints derived through partial contraction
analysis.

Theorem 3 If the following constraints are satisfied for the
autonomous nonlinear DS in (8),

(
Ak
p

)T
M p + M pAk

p ≤ −γpM p, k = 1, 2, . . . , Kp,

(9)

Ak
px

∗ + bkp = 0, k = 1, 2, . . . , Kp (10)

where γp is a strictly positive scalar constant and M p ∈
R
d×d represents a constant positive definite symmetric

matrix, then all trajectories of the system in (8) converge
to the goal location x∗.

Proof Consider Kp systems given by

ẏp (t) = Ak
p yp (t) + bkp, k = 1, 2, . . . , Kp (11)

If (10) is satisfied, then yp = x∗ is the common equilibrium
of each kth systemof (11). Furthermore, based onTheorem1,
if (9) is satisfied then every kth system of (11) is contracting
in a common contraction metric M p and all the trajectories
of each kth system of (11) will converge to the goal loca-
tion x∗. Consider a new auxiliary system which is a convex
combination of the systems in (11)

ẏp (t) = f p
(
x (t) , yp (t)

)

=
Kp∑
k=1

hkp (x (t))
(
Ak
p yp (t) + bkp

)
(12)

where yp (t) ∈ R
d . If (10) is satisfied, the particular solution

yp = x∗ of (12) is also its equilibrium point. On defining
the virtual dynamics

δ ẏp � ∂ f p
∂ yp

δ yp (13)

and substituting the Jacobian of the auxiliary system (given

by ∂ f p
∂ yp

= ∑Kp
k=1 h

k
p (x (t)) Ak

p), for any constant symmetric

positive definite M p

∂ f p
∂ yp

T

M p + M p
∂ f p
∂ yp

�
Kp∑
k=1

hkp (x (t))
(
Ak
p

)T
M p

+ M p

K p∑
k=1

hkp (x (t)) Ak
p

123

Autonomous Robots (2019) 43:897–912 903

=
Kp∑
k=1

hkp (x (t))

((
Ak
p

)T
M p + M pAk

p

)
(14)

Using (9) and (14), we have ∂ f p
∂ yp

T
M p + M p

∂ f p
∂ yp

≤
−∑Kp

k=1 h
k
p (x (t)) γpM p, ∀ yp (t). Since 0 ≤ hkp (x (t)) ≤

1 and
∑Kp

k=1 h
k
p (x (t)) = 1, ∀x (t), we have

∂ f p
∂ yp

T

M p + M p
∂ f p
∂ yp

≤ −γpM p, ∀ yp (t) (15)

Furthermore, taking the time derivative of V (δ yp) =
δ yTpM pδ yp, and using (15) yields V̇

(
δ yp

) ≤ −γpδ yTp
M pδ yp. Hence, the system (12) is contracting with respect
to yp (recall Definition 1). Further, based on Theorem 1, all
the trajectories of (12) will globally exponentially converge
towards each other.

Now that the convergence of yp (t) is shown, the conver-
gence of x (t) to x∗ remains to be proven. Since the auxiliary
system in (12) is contracting with respect to yp (t), and the
trajectory yp (t) = x∗ [a particular solution of (12)] is an
equilibrium point, then according to Theorem 2, the trajec-
tories x (t) of (8) will globally exponentially converge to the
goal location x∗. ��
Remark 3 The constraints in (9), derived using partial con-
traction analysis, are different than those presented in
Khansari-Zadeh and Billard (2011). Furthermore, note that
the constraints in (9) guarantee global exponential stability
of the learned model and the rate of convergence, γp, can be
tuned for specific applications.

The constrained optimization problem to be solved in order to
train the GMMmodel with the demonstrations can bewritten
as

{θ̂ p, M̂ p} = arg min
θ p,M p

Jp
(
θ p

)
(16)

s.t.
(
Ak
p

)T
M p + M pAk

p + γpM p 	 0, k = 1, . . . , Kp,

(17)

Ak
px

∗ + bkp = 0, k = 1, . . . , Kp, (18)

M p
 0 (19)

Σk
p
 0, k = 1, . . . , Kp, (20)

0 ≤ πk
p ≤ 1, k = 1, . . . , Kp, (21)

∑
k

πk
p = 1 (22)

where θ p = {μ1
p . . . μ

Kp
p ,Σ1

p . . . Σ
Kp
p , π1

p . . . π
Kp
p } is a vec-

tor containing the parameters of the GMM model. Note that
the parameters of the matrix M p are also learned from the

demonstrations as opposed to being manually designed. The
constraints (17)–(19) ensure the global attraction of the goal
location x∗ and the constraints in (20)–(22) are a result of
using a GMM to model the dynamics. Similar to Khansari-
Zadeh andBillard (2011), the cost function Jp

(
θ p

)
is chosen

to be the mean squared error, given by

Jp
(
θ p

) = 1

2Tp

Np∑
n=1

Tn∑
t=0

‖ ˆ̇xn (t) − ẋn (t) ‖2 (23)

where Tp = ∑Np
n=1 Tn is the total number of data points in

the demonstrations, Np is the number of demonstrations, Tn
is the number of data points in the nth demonstration, and
ˆ̇xn (t) = f p (xn (t)) is the predicted state derivative com-
puted based on (8). Note that the learning algorithm, derived
in (16)–(22) is a constrained non-convex optimization prob-
lem, for which, a local solution can be obtained using
standard nonlinear programming algorithms and general pur-
pose solvers, such as sequential quadratic programming
(SQP) and active set algorithm. In order to make certain
that the solver is provided with a good initialization, the
expectation–maximization (E–M) algorithm is used to ini-
tialize the parameters of the GMM (Dempster et al. 1977).

4 Learning orientation dynamics from
demonstrations

Let the angular velocity ω (t) ∈ R
3 and the orientation

described by the quaternion q (t) ∈ S
3 ⊂ R

4 evolve accord-
ing to the following differential equations

ω̇ (t) = fo
(
ω (t) ,ω (t) , q (t) , qg

)
(24)

q̇ (t) = 1

2
� (ω (t)) q (t) (25)

where fo : R3 × R
3 × S

3 × S
3 → R

3 is a nonlinear con-
tinuously differentiable autonomous function that models
the orientation dynamics, qg ∈ S

3 is the goal orientation,

� (ω (t)) =
[−[ω(t)]× ω(t)

−ω(t)T 0

]
∈ R

4×4, and [ω (t)]× ∈ R
3×3 is

a skew-symmetric matrix formed with the angular velocity
vector ω (t) at time t .

4.1 Encoding orientation dynamics using
contracting GMMs

The nonlinear function fo (·) defined in (24) ismodeled using
a GMM, and the resulting autonomous DS is given by3

3 In fo
(
ω (t) ,ω (t) , q (t) , qg

)
, the first argument refers to the ω (t) in

ho (·) and the second argument refers to the ω (t) in the affine part of
fo (·).

123

904 Autonomous Robots (2019) 43:897–912

ω̇ (t) =
Ko∑
k=1

hko (z (t))
(
Ak
oz (t) + bko

)

= fo
(
ω (t) ,ω (t) , q (t) , qg

)
(26)

where z (t) = [ω (t)T , log
(
qg ∗ q̄ (t)

)T]T ∈ R
6, q̄ (t) is

the quaternion conjugate of q (t) , hko (z) = P(k)P(z|k)∑Ko
i=1 P(i)P(z|i)

is the scalar weight associated with the kth Gaussian such
that 0 ≤ hko (z) ≤ 1 and

∑Ko
k=1 h

k
o (z) = 1,P (k) = πk

o

is the prior probability, Ak
o = Σk

ω̇z

(
Σk

z
)−1

, bko = μk
ω̇ −

Ak
oμ

k
z,μ

k
o = [μk

z, μk
ω̇]T ∈ R

9 is the mean of the kth Gaus-
sian, μk

z ∈ R
6 and μk

ω̇ ∈ R
3 are the mean vectors associated

with z and ω̇, respectively, Σk
o =

(
Σk

z Σk
zω̇

Σk
ω̇z Σk

ω̇

)
∈ R

9×9

is the covariance of the kth Gaussian, Σk
z ∈ R

6×6 and
Σk

ω̇ ∈ R
3×3 are the covariance matrices associated with z

and ω̇, respectively, andΣk
zω̇ ∈ R

6×3 is the cross-covariance
matrix between z and ω̇. The quaternion logarithm log (q) :
S
3 → R

3 is defined as

log (q) =
{
arccos (v) u

‖u‖ , u = 0

[0, 0, 0]T , otherwise
(27)

The expression log
(
qg ∗ q̄ (t)

)
can be viewed as the error

or the distance between the quaternion at time t and the
goal quaternion in R

3 (Ude 1999). Note that the dynamics
in (24) and (25), by design, generate quaternion trajectories
that stay in the S3 manifold. Hence, this design circumvents
the need for post-processing of the quaternion trajectory to
ensure S

3 membership. Given a set of No demonstrations,
this paper addresses the problem of learning the function
fo (·), which is modeled using a GMM. The nth demonstra-
tion consists of the trajectories of angular velocity, angular
acceleration, and the orientation represented using quater-
nions: {ωn(t), ω̇n(t), qn (t)}t=Tn

t=0 .

Theorem 4 If the following constraints are satisfied for the
autonomous nonlinear DS in (26),

(
Ak

ω

)T
Mo + MoAk

ω ≤ −γoMo, k = 1, 2, . . . , Ko, (28)

bko = 0, k = 1, 2, . . . , Ko (29)

|Ak
q | = 0, k = 1, 2, . . . , Ko, (30)

where Ak
ω and Ak

q are sub-matrices of A
k
o obtained by select-

ing the first, and last three columns of Ak
o, respectively, γo is a

strictly positive scalar constant, | · | denotes the determinant
of a matrix, and Mo ∈ R

3×3 represents a constant positive
definite symmetric matrix, then all trajectories of the system
in (26) converge to ωg = [0 0 0]T while q (t) = qg.

Proof Consider Ko systems given by

ẏo (t) = Ak
oZ (t) + bko, k = 1, 2, . . . , Ko (31)

where yo (t) ∈ R
3,Z (t) = [yo (t)T , log

(
qg ∗ q̄ (t)

)T]T .
If (28)–(30) are satisfied, the matrices Ak

ω and are Ak
q are

guaranteed to be full rank and, as a result, have trivial
null spaces. This implies that Ak

ωω = [0 0 0]T only when
ω = [0 0 0]T and similarly Ak

q e = [0 0 0]T only when

e = [0 0 0]T . Note that log
(
qg ∗ q̄ (t)

)T = [0 0 0]T only
when q (t) = qg . Thus, ẏo (t) = [0 0 0]T only when
yo (t) = ωg = [0 0 0]T and q (t) = qg . Hence, yo = ωg

while q (t) = qg is the common equilibrium for each of the
Ko systems in (31). Further, based on Theorem 1, if the con-
straints in (28) are satisfied, then each kth system of (31) is
said to be contracting with respect to yo in a common con-
traction metric Mo and all their trajectories will converge
to the goal location ωg while q (t) = qg . Now consider a
new auxiliary system, which is a convex combination of the
systems in (31), given by

ẏo (t) = fo
(
yo (t) ,ω (t) , q(t), qg

)

=
Ko∑
k=1

hko (z (t))
(
Ak
oZ (t) + bko

)
. (32)

If (29) and (30) are satisfied, the particular solution yo = ωg

of (32) is also its equilibrium point. On defining the virtual
dynamics

δ ẏo � ∂ fo
∂ yo

δ yo (33)

and substituting the Jacobian of the auxiliary system (given
by ∂ fo

∂ yo
= ∑Ko

k=1 h
k
o (z (t)) Ak

ω), for any constant symmetric
positive definite Mo,

∂ fo
∂ yo

T

Mo + Mo
∂ fo
∂ yo

�
Ko∑
k=1

hko (z (t))
(
Ak

ω

)T
Mo

+ Mo

Ko∑
k=1

hko (z (t)) Ak
ω

=
Ko∑
k=1

hko (z (t))

((
Ak

ω

)T
Mo + MoAk

ω

)
(34)

Using (28) and (34), we have ∂ fo
∂ yo

T
Mo + Mo

∂ fo
∂ yo

≤
−∑Ko

k=1 h
k
o (z (t)) γoMo, ∀ yo (t). Since 0 ≤ hko (z (t)) ≤ 1

and
∑Ko

k=1 h
k
o (z (t)) = 1, ∀z (t), we have

∂ fo
∂ yo

T

Mo + Mo
∂ fo
∂ yo

≤ −γoMo, ∀ yo (t) (35)

123

Autonomous Robots (2019) 43:897–912 905

Taking the time derivative of V (δ yo) = δ yTo Moδ yo, and
using (35) yields V̇

(
δ yo

) ≤ −γoδ yTo Moδ yo. Hence, the
system (32) is contracting with respect to yo (recall Defini-
tion 1). Further, based on Theorem 1, all the trajectories of
(32) globally exponentially converge towards each other.

Now that the convergence of yo (t) is shown, the conver-
gence ofω (t) toωg remains to be proven. Since the auxiliary
system in (32) is contracting with respect to yo, and the
trajectory yo (t) = ωg (a particular solution of (32)) is an
equilibrium point, then according to Theorem 2, the trajec-
tories ω (t) of (26) will globally exponentially converge to
ωg . ��

The constrained optimization problem to be solved in
order to train the GMM model can be written as

θ̂o, M̂o = arg min
θo,Mo

Jo (θo) (36)

s.t.
(
Ak

ω

)T
Mo + MoAk

ω + γoMo 	 0, k = 1, . . . , Ko,

(37)

bko = 0, k = 1, . . . , Ko, (38)

|Ak
q | = 0, k = 1, . . . , Ko, (39)

Mo
 0 (40)

Σk
o
 0, k = 1, . . . , Ko, (41)

0 ≤ πk
o ≤ 1, k = 1, . . . , Ko, (42)∑

k

πk
o = 1, (43)

where θo = {μ1
o . . . μ

Ko
o ,Σ1

o . . . Σ
Ko
o , π1

o . . . π
Ko
o } is a vec-

tor containing the parameters of the GMM model. The
constraints (37)–(40) ensure the global attraction of the goal
location ωg and the constraints in (41)–(43) are a result of
using a GMM to model the dynamics. Similar to (Khansari-
Zadeh and Billard 2011), the cost function Jo (θo) is chosen
to be the mean squared error and is given by

Jo (θo) = 1

2To

No∑
n=1

Tn∑
t=0

‖ ˆ̇ωn (t) − ω̇n (t) ‖2 (44)

where To = ∑No
n=1 Tn is the total number of data points in

the demonstrations and ˆ̇ωn (t) = fo
(
ωn (t) , qn (t) , qg

)
is

the predicted state derivative computed based on (26). Simi-
lar to the solution approach for the optimization problem in
(16)–(22), the expectation–maximization (E–M) algorithm
(Dempster et al. 1977) is used to initialize the parameters
for (36)–(43). A consolidated step-by-step description of the
CDSP algorithm is given in Algorithm 1.

Algorithm 1: CDSP: Learning Pose Dynamics from
Demonstrations

Collect Pose Demonstrations:
1 Record the robot’s end-effector pose trajectories as a user guides
the robot to perform a desired task;

2 If necessary, using the recorded pose trajectories and the finite
differences method, obtain linear velocity, angular velocity, and
angular acceleration estimates for the demonstrations;

Learn Position Dynamics:
3 Define the design parameters of the position GMM, such as the
number of Gaussians;

4 Obtain initial estimates of the GMM parameters using the E–M
algorithm;

5 Based on the initialization from the last step, obtain the
parameters of the position GMM by solving the optimization
problem defined in (16)–(22);

Learn Orientation Dynamics:
6 Define the design parameters of the orientation GMM, such as
the number of Gaussians;

7 Obtain initial estimates of the GMM parameters using the E–M
algorithm;

8 Based on the initialization from the last step, obtain the
parameters of the orientation GMM by solving the optimization
problem defined in (36)–(43);

Robot Implementation:
9 Obtain the initial pose of the end-effector, and define the desired
goal pose;

10 Translate the origin of the position system to the desired goal
location;

11 Generate the end-effector position trajectory by integrating the
learned position dynamics per (8);

12 Translate the end-effector position trajectories back to the robot’s
coordinate frame;

13 Generate the end-effector orientation trajectory by integrating the
learned orientation dynamics per (25) and (26);

14 Convert the generated end-effector pose trajectories from
Cartesian space into the joint space;

15 Implement the joint space trajectory using a low-level robot
controller.

5 Experimental evaluation

Three sets of experiments are conducted to evaluate the
CDSP algorithm. The algorithm is run on a desktop com-
puter running Intel i3 processor and 8 GB of memory. The
algorithm is coded using MATLAB 2016a and the fmincon
function is used to solve the constrained optimization prob-
lem. Initial estimates of the parameters of the GMM are
obtained using the expectation–maximization (E–M) algo-
rithm (Dempster et al. 1977). The first set of experiments uses
the Learning Algorithms and Systems Laboratory (LASA)
human handwriting library introduced in Khansari-Zadeh
and Billard (2011) to learn point-to-point position dynamics.
The second set of experiments showcase the ability of CDSP
to learn orientation dynamics from synthetic demonstrations
generated using a minimum jerk polynomial. In the both sets

123

906 Autonomous Robots (2019) 43:897–912

Fig. 3 Qualitative performance of the CDSP algorithm on the LASA dataset (Color figure online)

of experiments, the CDSP algorithm is compared with state-
of-the-art algorithms for learning fromdemonstrations. In the
final set of experiments, the learned models are used in path
generation for various tasks performed by aBaxter robot arm.
In all the following experiments, the frame of reference for
the position trajectories is attached to the desired equilibrium
point. Furthermore, similar to Khansari-Zadeh and Billard
(2011), Khansari-Zadeh and Billard (2014) and Neumann
and Steil (2015), it is assumed that all the demonstrations
of a particular shape or motion are intended to converge to
the same equilibriumpoint. In practice, noisy demonstrations
are appropriately translated during pre-processing, such that
they end at the same point.

5.1 Learning position dynamics

TheCDSP algorithm is tested on the LASAhuman handwrit-
ing library, introduced inKhansari-Zadeh andBillard (2011),
that consists of handwritingmotions collected frompen input
using a Tablet PC. The library contains a total of 26 hand-
writing motion sets and four additional sets with more than
one movement shape (Multi Models). The qualitative per-
formance of the CDSP algorithm on the benchmark dataset
over 30 handwriting motions is shown in Fig. 3. The demon-
strations (solid red) and the reproductions (dashed blue) are
overlaid on the streamlines (light gray) of each of the learned
DSs.

To evaluate the performance of the CDSP algorithm
against state-of-the-art algorithms, the CDSP algorithm is
compared with 1) SEDS (Khansari-Zadeh and Billard 2011),
2) CLF-DM (NILC and WSAQF) (Khansari-Zadeh and Bil-
lard 2014), 3) NiVF (NILC and WSAQF) (Lemme et al.
2013), and 4) τ -SEDS (NILC and WSAQF) (Neumann and
Steil 2015) algorithms. It must be noted that, while the algo-
rithms using theWSAQF parametrization result in Lyapunov
candidates that are globally valid, those using the NILC
parametrization result in Lyapunov candidates that are valid

only in predefined local regions. Furthermore, the WSAQF
parametrization is known to perform slightly better than the
NILC counterpart since the NILC parametrization incorpo-
rates simple alignment of the Lyapunov candidates’ gradient
and the velocity of the demonstrations, which may not be
adequate to guarantee a violation-free Lyapunov candidate
(Neumann and Steil 2015).

The comparisons are carried out in terms of the repro-
duction accuracy as measured by swept error area (SEA)
(Khansari-Zadeh and Billard 2014). The SEA for a method
is given by

SE A = 1

Nd

Nd∑
n=1

Tn−1∑
t=0

A(x̂n (t) , x̂n (t + 1) ,

xn (t) , xn (t + 1)) (45)

where x̂n (t) , ∀t = 0, . . . , Tn is the equidistantly re-
sampled reproduction of the nth demonstration with Tn
samples, Nd is the number of demonstrations, and A (·)
denotes the area of enclosed tetrahedron formed with the
points x̂n (t) , x̂n (t + 1) , xn (t), and xn (t + 1) as corners
[see Khansari-Zadeh and Billard (2014) for details]. The
means and standard deviations of SEA for all the state-of-
the art algorithms used in this comparison are obtained from
the authors of Neumann and Steil (2015). The results of the
comparisons of means and standard deviations of SEA are
summarized in Fig. 4.

In order to validate the comparisons against the state-
of-the-art algorithms, an one-way analysis of variance
(ANOVA) is conducted on the obtained results of all the algo-
rithms. It is observed that the SEAmeans of all the algorithms
are statistically significantly different (p < 0.001). Fur-
ther, to analyze how each of the eight algorithms performed
against each other, a Tukey’s honestly significant differ-
ences (HSD) test is conducted. The statistical significance
(or insignificance) of the differences among the algorithms’
average SEAs are indicated in Fig. 4.

123

Autonomous Robots (2019) 43:897–912 907

SEDS

CLF
-D

M (N
ILC

)

-S
EDS (N

ILC
)

NIV
F (N

ILC
)

CLF
-D

M (W
SAQF)

NIV
F (W

SAQF)

-S
EDS (W

SAQF)

CDSP
0

2000

4000

6000

8000

10000

12000

14000

16000

p = 0.541

p = 0.358

Fig. 4 The mean swept error area of different algorithms computed
over 30 motions (each with seven sample trajectories) of the LASA
library. Statistically significant differences (p < 0.001) are denoted by
*** and the p values of non-significant differences are shown in Gray
(Color figure online)

Fig. 5 Qualitative comparison of the reproductions generated bySEDS,
CLF-DM, and CDSP algorithms for a simple shape (Angle) on the left
and a more complex shape (SharpC) on the right (Color figure online)

Further, in Fig. 5, the qualitative performance of SEDS,
CLF-DM(WSAQF), andCDSPalgorithmson a simple shape
(Angle) and amore complex shape (SharpC)) are shown. The
SEDS algorithm does not use a notion of generalized squared
distance. Thus, it fails to accurately reproduce complex
shapes, such as SharpC. TheCLF-DMandCDSPalgorithms,
which use the notion of generalized squared distance, are able
to reproduce the SharpC shape more accurately.

5.2 Learning orientation dynamics

The ability of the CDSP algorithm to learn orientation
dynamics is evaluated on a set of 200 synthetic orientation
trajectories. Aminimum jerk polynomial is sampled between
randomly chosen initial and goal quaternions to generate
the demonstrations. Each element of both initial and goal
quaternions is sampled from a uniformly distributed interval
[− 1, 1]. The sampled trajectories are normalized in order
to obtain the reference quaternion trajectories, {qn (t)}t=Tn

t=0 .
Based on the obtained quaternion trajectories, the refer-
ence angular velocity trajectories, {ωn(t)}t=Tn

t=0 , are generated.

The reference angular acceleration trajectories, {ω̇n(t)}t=Tn
t=0 ,

are obtained using the first-order forward finite difference
method along with a third-order median filter.

The CDSP algorithm is compared with orientation DMP
(ODMP) (Ude et al. 2014), generalized DMP (gen-DMP)
(Pastor et al. 2009), TP-GMM(Silvério et al. 2015),CLF-DM
(WSAQF) (Khansari-Zadeh and Billard 2014), and SEDS
(Khansari-Zadeh and Billard 2011) algorithms. The compar-
isons are carried out in terms of the orientation reproduction
errors, as measured by the log quaternion error. The log

quaternion error at time t is given by log
(
qn (t) ∗ ¯̂qn (t)

)T
,

where {qn (t)}t=Tn
t=0 is the nth reference quaternion trajec-

tory (demonstration), and
{
q̂n (t)

}t=Tn
t=0 is the corresponding

reproduction. To carry out a fair comparison, the number of
Gaussians for the CDSP, CLF-DM, and SEDS algorithms is
chosen equally to be nine. The design parameters for ODMP,
are chosen to be the same as given in Ude et al. (2014) for
approximating a desired orientation trajectory. The parame-
ters of the gen-DMP and TP-GMM algorithms are chosen
empirically to minimize reproduction errors. An example
quaternion reference trajectory and the corresponding repro-
ductions generated by the models trained using different
algorithms are shown in Fig. 6. In Fig. 7, the corresponding
quaternion reproduction error trajectories of all the methods
(in terms of the log quaternion error between the reference
and the reproduction trajectories) are shown. In Fig. 8, a
reference angular velocity trajectory and its corresponding
reproductions by CDSP and ODMP algorithms are shown.
The results are computed over 200 runs. In each run, each
algorithm is trained on one of the 200 trajectories and tested
on the same trajectory. The overall statistics of the compar-
isons are summarized in Fig. 9.

To validate the comparisons, an one-way ANOVA is con-
ducted on the obtained means and standard deviations of all
the algorithms. It is observed that the mean log quaternion
errors are statistically significantly different (p < 0.001).
Further, to analyze how each of the six algorithms performed
against each other, a Tukey’s HSD test is conducted. The

Fig. 6 An example reference quaternion trajectory overlaid with
the corresponding reproductions generated using different algorithms
(Color figure online)

123

908 Autonomous Robots (2019) 43:897–912

Fig. 7 The log errors between an example reference quaternion tra-
jectory and the corresponding reproductions generated using different
algorithms (Color figure online)

Fig. 8 Angular velocity trajectories reproduced by the models trained
using the CDSP algorithm (solid blue) and the ODMP algorithm
(solid red). The reference angular velocity trajectories used for training
(dashed black) are also overlaid (Color figure online)

SEDS CLF-DM gen-DMP TP-GMM ODMP CDSP
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

M
ea

n
Lo

g
Q

ua
te

rn
io

n
E

rr
or

p = 0.0938

Fig. 9 The average log quaternion error of different algorithms com-
puted over 50 synthetic orientation trajectories. Statistically significant
differences (p < 0.001) are denoted by *** and the p values of non-
significant differences are shown in Gray

statistical significance (or insignificance) of the differences
among the algorithms’ average log quaternion errors are indi-
cated in Fig. 9.

5.3 Implementation on a robot

For the final experiment, the utility of the CDSP algorithm to
generate reference pose trajectories for three different tasks
is demonstrated. The tasks are: (1) wire insertion, (2) parts
assembly, and (3) water pouring. The wire insertion involved

insertion of a wire into a breadboard, the parts assembly task
involved attaching a toy construction set block to another,
and the water pouring task involved pouring water from a
bottle into one of the four mugs placed on the table. Each
of these tasks require accurate reproduction of both posi-
tion and orientation trajectories, and accurate convergence
to the goal location in order for the robot to successfully
complete them. The tasks are carried out using a seven
degree-of-freedom Baxter research robot. For each task, six
kinesthetic demonstrations are recorded bymanuallymoving
the robot’s arm in gravity-compensated mode. The obtained
demonstrations contain joint trajectories which are converted
to position and orientation trajectories of the end-effector
using forward kinematics. First-order forward finite differ-
ence method along with a third-order median filter is used
to obtain the necessary velocity and acceleration trajectories.
These demonstrations are then used to train two GMMs, one
for position dynamics and the other for orientation dynamics.

As an example, the demonstrations and the reproductions
generated using the trained models for the wire insertion task
are shown in Figs. 10 and 11. Further, the reference trajec-
tories generated by the learned models are fed to the robot
to perform the tasks autonomously. To execute the trajecto-
ries on the Baxter robot, the in-built low-level controller and
the inverse kinematics engine, IKFast (Diankov 2010), are
used. A sequence of images showing an example of Bax-
ter inserting a wire into a breadboard is provided in Fig. 12.
Similar sequences of images showing Baxter performing the
construction set block assembly and water pouring tasks are
shown in Figs. 13 and 14, respectively.

Furthermore, the execution of each task is carried out a
total of 50 times—each time starting from a randomly chosen
initial pose and providing a randomly chosen target pose.
The CDSP algorithm is able to generate both position and
orientation trajectories that converge to the target position
and orientation, respectively, on all attempts of all the tasks.
Correspondingly, the robot implementation is also carried out
50 times for each task. It is found that the robot successfully
(1) inserted the wire into the breadboard, with a tolerance of

Fig. 10 3-Dposition trajectories reproduced by the trainedGMM(solid
lines) and the corresponding demonstrations (dashed lines) for the wire
insertion task (Color figure online)

123

Autonomous Robots (2019) 43:897–912 909

± 3.5mm, on 42 instances, (2) assembled two construction
set blocks together on 44 instances, (3) poured water in to the
target mug on 47 instances. A pouring attempt is considered
successful if the stream of water poured by the robot falls
entirely inside the target mug.

6 Discussion

The learning process is carried out by numerically solving
a constrained optimization problem. Due to the non-convex
nature of the problem, the learned model is not guaranteed
to be the global solution. However, in practice, the CDSP
algorithm is shown to be capable of successfully learning a
variety of motions as evidenced by the experimental evalu-
ations. Note that the parameters of the contraction matrices,

Fig. 11 Quaternion trajectories reproduced by the trained GMM (solid
lines) and the corresponding demonstrations (dashed lines) for the wire
insertion task (Color figure online)

Mp and Mo, are learned directly from the demonstrations
for each of the motions, as opposed to being manually
tuned.

In the experiments presented in Sect. 5.1, it is shown that
theCDSPalgorithm is capable of embedding different shapes
in the different parts of the state space of a single DS in the
position space (see fourth, fifth, and six shape from the left
on the second row of Fig. 3). As shown in Fig. 5, while the
SEDS algorithm is capable of accurately reproducing sim-
pler shapes (such as Angle), it is not capable of accurately
encoding the dynamics of complex shapes (such as SharpC).
The CLF-DM and CDSP algorithms, on the other hand, are
shown to be capable of accurately encoding the dynamics of
both shapes. This is due to the fact that, as pointed out Sect. 1,
the use of the generalized squared length in the develop-
ment of constraints allows the CDSP algorithm to accurately
model a wider class of motions when compared to the SEDS
algorithm. Furthermore, according to the thorough quantita-
tive analyses (including a Tukey’s HSD test), the mean SEA
of the CDSP algorithm is shown to be statistically signifi-
cantly lower than that of all the other seven state-of-the-art
algorithms used in the comparison (p < 0.001). It is also
observed that the CDSP algorithm results in one of the high-
est SEA variances (see Fig. 4). One possible explanation to
this observation is that the constant contraction metric Mp,
used in the development of the constraints, while suitable to
accurately model most of the shapes in the LASA library,
is too restrictive to accurately model a few highly complex
shapes, such as the DoubleBendedLine (fourth shape on the

Fig. 12 A sequence of images showing Baxter autonomously inserting a wire into a bread board

Fig. 13 A sequence of images showing Baxter autonomously attaching one construction set block to another

Fig. 14 A sequence of images showing Baxter autonomously pouring water from a bottle into the correct target mug

123

910 Autonomous Robots (2019) 43:897–912

first row of Fig. 3) and JShape2 (seventh shape on the first
row of Fig. 3).

In the experiment presented in Sect. 5.2, orientation
dynamics are learned from synthetic reference trajectories.
Comparative analysis, shown in Fig. 9, reveals that the
CDSP algorithm resulted in the lowest average log error
when compared to all the other five algorithms evaluated
in this experiment used for comparison. Further, accord-
ing to the Tukey’s HSD test, the average log error of the
CDSP algorithm’s reproductions is statistically significantly
(p < 0.001) lower than that of the SEDS, CLF-DM, gen-
DMP, and TP-GMMalgorithms. It is also observed that there
is no statistically significant difference between the average
log quaternion errors of the CDSP and the ODMP algorithm.
However, as shown in Fig. 8, the angular velocity trajecto-
ries reproduced by the CDSP algorithm are smoother than
those reproduced by ODMP algorithm for the same sample
trajectory. Itmust be noted that,while the quaternion trajecto-
ries generated by the CDSP and ODMP algorithms naturally
retained S

3 membership, the other four algorithms required
an ad-hoc post-normalization step to guarantee membership.
Further, the hyper-parameters of the algorithms used in this
comparison have to bemanually tuned for each reference tra-
jectory.On the other hand, theCDSPalgorithmautomatically
learns its parameters (except for the number of Gaussians)
from the demonstrations.

In the experiment presented in Sect. 5.3, the practical
utility of the CDSP algorithm to successfully learn pose
dynamics of Baxter’s end-effector is demonstrated for three
different tasks. The learned models are used to generate end-
effector reference trajectories for Baxter’s arm to perform the
desired task. The CDSP algorithm is shown to be capable of
modeling a wide variety of tasks, such as wire insertion, parts
assembly, and water pouring. Inverse Kinematics is used
along with Baxter’s low-level controllers to follow the end-
effector pose generated by the CDSP algorithm. The robot’s
low-level controller and low accuracy in tracking the com-
manded joint angle positions are likely factors that affect the
success rate of the wire insertion, block assembly and water
pouring tasks.

7 Conclusion and future work

The CDSP algorithm for learning arbitrary point-to-point
motions is presented. GMMs are used to learn both the
position and orientation dynamics from demonstrations. The
learned models are then used to generate trajectories for the
end-effector motion of a robot. In order to ensure that the
trajectories generated by the learned models converge to the
goal location, partial contraction analysis-based constraints
are developed and enforced in the learning process. Addi-
tionally, the system used to model the orientation dynamics

is designed such that the special constraints of S3 are main-
tained. The experimental evaluations of the CDSP algorithm
on the LASA human handwriting library and the synthet-
ically generated orientation data suggest that the CDSP
algorithm is able to successfully learn a variety of point-
to-point motions. Based on the comparison results against
seven state-of-the-art motion generation algorithms on the
LASA handwriting library, the CDSP algorithm has the low-
est mean swept error area (SEA). The proposed framework
of CDSP uses a constant contraction metric in the develop-
ment of the partial contraction analysis-based constraints. As
part of future work, the use of a state-dependent contraction
metric will be explored in order to further widen the class of
motions that can be learned using the proposed framework.

Acknowledgements The authors would like to acknowledge Klaus
Neumann and Jochen Steil for providing the SEA means and standard
deviations of the seven state-of-the-art algorithms used for comparison
presented in Sect. 5.1. The authors would like to thank the anonymous
reviewers for their valuable comments and suggestions to improve the
quality of the paper.

Funding Funding was provided by the UTC Institute for Advanced
Systems Engineering (UTC-IASE) of the University of Connecticut
and the United Technologies Corporation.

References

Abbeel, P., & Ng, A. Y., (2004). Apprenticeship learning via inverse
reinforcement learning. In International conference on machine
learning (pp. 1–8). ACM.

Ahmadzadeh, R., Rana, M. A., & Chernova, S. (2017). Generalized
cylinders for learning, reproduction, generalization, and refine-
ment of robot skills. In Robotics: Science and systems.

Akgun, B., Cakmak,M., Jiang, K., & Thomaz, A. L. (2012). Keyframe-
based learning fromdemonstration. International Journal of Social
Robotics, 4(4), 343–355.

Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009).
A survey of robot learning from demonstration. Robotics and
Autonomous Systems, 57(5), 469–483.

Billard, A., & Matarić, M. J. (2001). Learning human arm movements
by imitation: Evaluation of a biologically inspired connectionist
architecture. Robotics and Autonomous Systems, 37(2), 145–160.

Bowen,C.,&Alterovitz,R. (2014).Closed-loopglobalmotionplanning
for reactive execution of learned tasks. In IEEE/RSJ international
conference on intelligent robots and systems (pp. 1754–1760).

Calinon, S., Bruno, D., Caldwell, D. G. (2014). A task-parameterized
probabilistic model with minimal intervention control. In IEEE
international conference on robotics and automation (ICRA) (pp.
3339–3344).

Cohn, D. A., Ghahramani, Z., & Jordan, M. I. (1996). Active learning
with statistical models. Journal of Artificial Intelligence Research,
4, 129–145.

Corke, P. I. (2011). Robotics, vision and control: Fundamental algo-
rithms in Matlab. Berlin: Springer.

Dani, A. P., Chung, S. J., & Hutchinson, S. (2015). Observer design
for stochastic nonlinear systems via contraction-based incremental
stability. IEEE Transactions on Automatic Control, 60(3), 700–
714.

123

Autonomous Robots (2019) 43:897–912 911

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likeli-
hood from incomplete data via the E–M algorithm. Journal of the
Royal Statistical Society Series B (Methodological), 39(1), 1–38.

Diankov, R. (2010). Automated construction of robotic manipulation
programs. Ph.D. thesis, Carnegie Mellon University.

Dragan, A. D., Muelling, K., Bagnell, J. A., & Srinivasa, S. S. (2015).
Movement primitives via optimization. In IEEE international con-
ference on robotics and automation (ICRA) (pp. 2339–2346).

Gribovskaya, E., Khansari-Zadeh, S.M.,&Billard, A. (2010). Learning
non-linear multivariate dynamics of motion in robotic manipu-
lators. The International Journal of Robotics Research, 30(1),
80–117.

Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2002). Learning rhyth-
mic movements by demonstration using nonlinear oscillators. In
IEEE/RSJ international conference on intelligent robots and sys-
tems (pp. 958–963).

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S.
(2013). Dynamical movement primitives: Learning attractor mod-
els for motor behaviors. Neural Computation, 25(2), 328–373.

Jenkins, O. C., Mataric, M. J., & Weber, S., et al. (2000). Primitive-
based movement classification for humanoid imitation. In IEEE-
RAS international conference on humanoid robotics.

Kalakrishnan, M., Righetti, L., Pastor, P., & Schaal, S. (2012). Learn-
ing force control policies for compliant robotic manipulation. In
International conference on machine learning (pp. 49–50).

Khansari-Zadeh, S.M.,&Billard, A. (2010). Imitation learning of glob-
ally stable non-linear point-to-point robot motions using nonlinear
programming. In IEEE/RSJ international conference on intelligent
robots and systems (IROS) (pp. 2676–2683).

Khansari-Zadeh, S. M., & Billard, A. (2011). Learning stable nonlinear
dynamical systems with gaussian mixture models. IEEE Transac-
tions on Robotics, 27(5), 943–957.

Khansari-Zadeh, S. M., & Billard, A. (2014). Learning control Lya-
punov function to ensure stability of dynamical system-based robot
reaching motions. Robotics and Autonomous Systems, 62(6), 752–
765.

Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learn-
ing in robotics: A survey. The International Journal of Robotics
Research, 32(11), 1238–1274.

Koenig, N., &Matarić, M. J. (2016). Robot life-long task learning from
humandemonstrations:Abayesian approach.AutonomousRobots,
40(6), 1–16.

Langsfeld, J. D., Kaipa, K. N., Gentili, R. J., Reggia, J. A., & Gupta, S.
K. (2014). Incorporating failure-to-success transitions in imitation
learning for a dynamic pouring task. In IEEE/RSJ international
conference on intelligent robots and systems.

Laumond, J. P., Mansard, N., & Lasserre, J. B. (2014). Optimality in
robot motion: Optimal versus optimized motion. Communications
of the ACM, 57(9), 82–89.

Laumond, J. P., Mansard, N., & Lasserre, J. B. (2015). Optimization as
motion selection principle in robot action. Communications of the
ACM, 58(5), 64–74.

Lemme, A., Neumann, K., Reinhart, R. F., & Steil, J. J. (2013). Neurally
imprinted stable vector fields. InEuropean symposium on artificial
neural networks (pp. 327–332).

Lohmiller, W., & Slotine, J. J. E. (1998). On contraction analysis for
nonlinear systems. Automatica, 34(6), 683–696.

Nemec, B., Tamo, M., Worgotter, F., & Ude, A. (2009). Task adap-
tation through exploration and action sequencing. In IEEE-RAS
international conference on humanoid robots (pp. 610–616).

Neumann, K., & Steil, J. J. (2015). Learning robot motions with stable
dynamical systems under diffeomorphic transformations.Robotics
and Autonomous Systems, 70, 1–15.

Paraschos, A., Daniel, C., Peters, J. R., & Neumann, G. (2013). Prob-
abilistic movement primitives. In Advances in neural information
processing systems (pp. 2616–2624).

Pastor, P., Hoffmann, H., Asfour, T., & Schaal, S. (2009). Learning and
generalization of motor skills by learning from demonstration. In
IEEE international conference on robotics and automation (pp.
763–768).

Peters, J., & Schaal, S. (2008). Natural actor-critic. Neurocomputing,
71(7), 1180–1190.

Priess, M. C., Choi, J., & Radcliffe, C. (2014). The inverse problem of
continuous-time linear quadratic gaussian control with application
to biological systems analysis. InASME2014dynamic systems and
control conference.

Rai, A., Meier, F., Ijspeert, A., & Schaal, S. (2014). Learning cou-
pling terms for obstacle avoidance. In International conference on
humanoid robotics (pp. 512–518).

Ravichandar, H., & Dani, A. P. (2015). Learning contracting nonlinear
dynamics from human demonstration for robot motion planning.
In ASME dynamic systems and control conference (DSCC).

Ravichandar, H., & Dani, A. P. (2016). Human modeling for bio-
inspired robotics. In Intention Inference for human–robot collab-
oration in assistive robotics (pp. 217–249). Elsevier.

Ravichandar, H., Salehi, I., & Dani, A. (2017). Learning partially con-
tracting dynamical systems from demonstrations. In Proceedings
of the 1st annual conference on robot learning (Vol. 78, pp. 369–
378). PMLR.

Ravichandar, H., Thota, P. K., & Dani, A. P. (2016). Learning periodic
motions from human demonstrations using transverse contraction
analysis. In American control conference (ACC) (pp. 4853–4858).
IEEE.

Rossano, G. F., Martinez, C., Hedelind, M., Murphy, S., & Fuhlbrigge,
T. A. (2013). Easy robot programming concepts: An industrial per-
spective. In IEEE international conference on automation science
and engineering (CASE) (pp. 1119–1126).

Saunders, J., Nehaniv, C. L., & Dautenhahn, K. (2006). Teaching
robots by moulding behavior and scaffolding the environment.
In ACM SIGCHI/SIGART conference on human–robot interaction
(pp. 118–125).

Schaal, S. (1999). Is imitation learning the route to humanoid robots?
Trends in Cognitive Sciences, 3(6), 233–242.

Schaal, S., Mohajerian, P., & Ijspeert, A. (2007). Dynamics systems vs.
optimal control-a unifying view. Progress in Brain Research, 165,
425–445.

Silvério, J., Rozo, L., Calinon, S., & Caldwell, D. G. (2015). Learning
bimanual end-effector poses from demonstrations using task-
parameterized dynamical systems. In IEEE/RSJ international
conference on intelligent robots and systems (IROS) (pp. 464–470).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An intro-
duction (Vol. 1). Cambridge: MIT Press.

Todorov, E., & Jordan, M. I. (2002). Optimal feedback control as a
theory of motor coordination. Nature Neuroscience, 5(11), 1226–
1235.

Ude, A., Nemec, B., Petrić, T., & Morimoto, J. (2014). Orienta-
tion in cartesian space dynamic movement primitives. In IEEE
international conference on robotics and automation (ICRA) (pp.
2997–3004).

Ude, A. (1999). Filtering in a unit quaternion space for model-based
object tracking. Robotics and Autonomous Systems, 28(2), 163–
172.

Ude, A., Gams, A., Asfour, T., & Morimoto, J. (2010). Task-specific
generalization of discrete and periodic dynamic movement primi-
tives. IEEE Transactions on Robotics, 26(5), 800–815.

Wang, C., Zhao, Y., Lin, C. Y., & Tomizuka, M. (2014). Fast planning
of well conditioned trajectories for model learning. In IEEE/RSJ
international conference on intelligent robots and systems (IROS)
(pp. 1460–1465).

Wang, W., & Slotine, J. J. E. (2005). On partial contraction analysis
for coupled nonlinear oscillators. Biological Cybernetics, 92(1),
38–53.

123

912 Autonomous Robots (2019) 43:897–912

Zucker, M., Ratliff, N., Dragan, A. D., Pivtoraiko, M., Klingensmith,
M., Dellin, C. M., et al. (2013). CHOMP: Covariant hamiltonian
optimization for motion planning. The International Journal of
Robotics Research, 32(9–10), 1164–1193.

Harish chaandar Ravichandar rec-
eived his M.S. degree in Elec-
trical and Computer Engineering
from the University of Florida,
Gainesville, FL, USA, in 2014.
He is currently working toward
his Ph.D. in the Department of
Electrical and Computer Engineer-
ing, University of Connecticut,
Storrs, CT, USA. His current res-
earch interests include machine
learning, nonlinear dynamical sys-
tems and estimation, and human–
robot interaction. His work was
recognized by the ASEM Dynam-

ics Systems and Controls Conference Best Student Robotics Paper
Award in 2015.

Ashwin Dani (M’11) received
the M.S. and Ph.D. degrees from
the University of Florida (UF),
Gainesville, FL, USA, in 2008
and 2011, respectively. He was
a Post-Doctoral Research Asso-
ciate at the University of Illinois,
Urbana-Champaign, IL, USA. In
2013, he joined the faculty of
Electrical and Computer Engineer-
ing (ECE) as Assistant Profes-
sor at the University of Connecti-
cut, Storrs, CT, USA. He has co-
authored over fifty refereed papers,
three book chapters, and holds

two patents in the area of robotics and vision-based estimation. His
current research interests include nonlinear estimation and control,
machine learning, human–robot collaboration, autonomous naviga-
tion. Dr. Dani serves as a member of the conference editorial board
of IEEE Control Systems Society (CSS). His work was recognized
by the ASEM Dynamics Systems and Controls Conference Best Stu-
dent Robotics Paper Award in 2015, ISIF International Conference
on Information Fusion Best Student Paper Award—2nd runner up in
2016, IEEE CSS Video Contest Award in 2015, UConn’s Outstand-
ing Teaching Award from ECE in 2015 and AAUP-UConn Chapter’s
Teaching Innovation Award.

123

	Learning position and orientation dynamics from demonstrations via contraction analysis
	Abstract
	1 Introduction
	1.1 Related work

	2 Preliminaries
	2.1 Brief review of contraction analysis
	2.2 Brief review of partial contraction analysis
	2.3 Brief review of quaternion parametrization on mathbbS3
	2.4 Brief review of dynamics represented using Gaussian mixture models

	3 Learning position dynamics from demonstrations
	3.1 Encoding position dynamics using contracting GMMs

	4 Learning orientation dynamics from demonstrations
	4.1 Encoding orientation dynamics using contracting GMMs

	5 Experimental evaluation
	5.1 Learning position dynamics
	5.2 Learning orientation dynamics
	5.3 Implementation on a robot

	6 Discussion
	7 Conclusion and future work
	Acknowledgements
	References

