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ABSTRACT

In this paper, we present an algorithm to learn the dynam-
ics of human arm motion from the data collected from human
actions. Learning the motion plans from human demonstra-
tions is essential in making robot programming possible by non-
expert programmers as well as realizing human-robot collabora-
tion. The highly complex human reaching motion is generated
by a stable closed-loop dynamical system. To capture the com-
plexity a neural network (NN) is used to represent the dynamics
of the human motion states. The trajectories of arm generated
by humans for reaching to a place are contracting towards the
goal location from various initial conditions with built-in obsta-
cle avoidance. To take into consideration the contracting nature
of the human motion dynamics the unknown motion model is
learned using a NN subject to contraction analysis constraints.
To learn the NN parameters an optimization problem is formu-
lated by relaxing the non-convex contraction constraints to Lin-
ear matrix inequality (LMI) constraints. Sequential Quadratic
Programming (SQP) is used to solve the optimization problem
subject to the LMI constraints. For obstacle avoidance a nega-
tive gradient of the repulsive potential function is added to the
learned contracting NN model. Experiments are conducted on
Baxter robot platform to show that the robot can generate reach-
ing paths from the contracting NN dynamics learned from human
demonstrated data recorded using Microsoft Kinect sensor. The
algorithm is able to adapt to situations for which the demonstra-
tions are not available, e.g., an obstacle placed in the path.

1 Introduction

Learning the dynamics of the human motion and using the
learned model to generate trajectories for robot that can adapt to
new situations is an important problem in the context of train-
ing robots using non-expert operators [1–5] as well as for safe
human-robot collaboration (HRC) [6–10]. For developing robot
assistants, robots should be given an ability to learn from the
user, e.g., in manufacturing context - a non-expert programmer
operator should be able to program the robot by just demonstrat-
ing the task to the robot [5], or for elderly assistant robots - the
user should be able to teach various tasks to robots. In this paper,
we develop a method to learn the complex human motion dy-
namic motion model using a neural network (NN) subject to mo-
tion trajectory constraints for reaching tasks. Humans or animals
generate inherently closed-loop stable limb motions to reach to
different locations by incorporating sensory feedback [11,12]. In
this work, the human arm reaching motion is represented using a
dynamic model ẋ = f (x), where f (x) is represented using a NN.
The nonlinear function f is learned using a single or multiple
demonstrations from a human. The problem of learning motion
dynamics is formulated as a parameter learning problem of NNs
under the stability constrains given by contraction analysis of
nonlinear systems [13]. The contraction analysis yields a global
exponential stability of nonlinear systems. The advantages of
learning a globally contracting function are: (a) from any initial
conditions the trajectories will converge to the goal location, (b)
even the addition of obstacle avoidance feature will generate the
trajectories that are converging to the goal location. To learn the
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NN parameters, an optimization problem is formulated which
computes the weights or parameters of the NN subject to the
contraction condition of the underlying dynamics. The contrac-
tion condition yields a matrix inequality condition which is non-
convex in the parameters of the NN. The contraction inequality
constraint is reformulated as the bilinear inequality constraints
by assuming the contraction metric to be a constant M1. The bi-
linear contraction conditions are then relaxed and converted to
the linear matrix inequality (LMI) constraints by using Shor’s
relaxation [14]. A new back-propagation algorithm is developed
which uses Sequential Quadratic Programming (SQP) algorithm
subject to the relaxed convex contraction constraints. Good ini-
tial conditions for constrained SQP algorithm are selected based
on the solutions obtained by solving an unconstrained optimiza-
tion problem first.

The learning contracting dynamics method is enhanced with
obstacle avoidance strategy by using repulsive potential function
gradient [15,16]. We use the repulsive potential function gradient
to modify the contracting attractor trajectory field learned from
demonstrations. Since the contracting trajectories are globally
converging, even if there is a change in trajectory due to repul-
sive field of obstacle the trajectories will always converge to the
goal location. We also show that the proposed algorithm is robust
to abrupt changes in trajectories caused due to sensor failures or
malfunctioning on the robot. The learned motion model will al-
ways create paths that converge to the goal locations in spite of
the abrupt changes. The other advantage of the approach is that
the trajectories can be learned only based on a single demon-
stration although learning paths based on more demonstrations
is beneficial if the single demonstration is a bad demonstration.
The block diagram of the proposed algorithm is shown in Fig. 1.
The contributions of this work are summarized below.

1. A new method to learn contracting dynamic motion model
in state-space is presented. The learned model can be used
to generate motion trajectories of robot based on human
demonstrations. The proposed algorithm combines the ad-
vantages of global exponential stability property of the goal
location due to contraction analysis (from dynamical sys-
tems theory) and the model represented using NN.

2. An obstacle avoidance feature can be naturally incorporated
in the dynamic model, the global contracting (global expo-
nential stability) nature of the dynamics makes the goal lo-
cation globally attractive, which makes the dynamics robust
to perturbations and sensor faults.

Related Work
The most related work to our work is learning from demon-

stration (LfD) using Gaussian Mixture Model (GMM) proposed

1Assumption of a constant contraction metric is not restrictive in the context
of training NN with the contraction constraints

FIGURE 1. Block diagram representation of learning contracting dy-
namics using NNs for robot trajectory generation along with obstacle
avoidance.

in [3, 17]. The Lyapunov stability conditions are used to derive
the parameters of GMMs with the global asymptotic stability
conditions. The global exponential stability condition obtained
using contraction provides robustness to perturbations, addition
of obstacle avoidance features, as well as sensor faults. A com-
prehensive review of recent methods in LfD is presented in [18].
Our work falls in the category of learning the dynamic model
from the data collected using human operators and use real-time
sensor feedback to avoid the obstacles. In [19], nonlinear oscil-
lators are used to learn the rhythmic movement by demonstra-
tions. Another related research area is dynamic motion primi-
tives (DMPs) [12, 20–22] which uses combination of simple lin-
ear dynamic models to represent complex motion to create goal-
directed trajectories. The DMP method can also handle obstacle
avoidance functions. In our approach, the attracting trajectories
are created in state space, whereas in DMP the attracting trajec-
tories are created in phase space.

An algorithm for physical human robot interaction (pHRI) is
presented in [23] for learning model of human motion and bike
bot interaction. The method uses axial linear embedding algo-
rithm to learn the lower-dimensional latent dynamics for human
limb motion. Compared to the method presented in our paper
the learning dynamics goal is different. Safety in HRC is an im-
portant aspect. In [9, 24, 25], algorithms for Kinect array based
safety in manufacturing assembly tasks are presented. Incorpo-
rating learning from failed demonstrations is studied in [26, 27].
An algorithm related to work space occupancy and human mo-
tion prediction is studied in [28]. In another line of research the
objective functions for performing tasks are learned instead of
the dynamic models which generate the trajectories. The meth-
ods are called as inverse reinforcement learning [29] or inverse
optimal control [30, 31].
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2 Preliminaries

A Brief Review of Contraction Analysis

In this section, contraction analysis [13] for analyzing expo-
nential stability of nonlinear systems is briefly reviewed. Con-
sider a nonlinear, non-autonomous system of the form

ẋ = f (x, t) (1)

where x(t) ∈ Rn is a state vector and f : Rn×R→ Rn is a con-
tinuously differentiable nonlinear function. With the assumed
properties of (1), the exact relation δ ẋ = ∂ f (x,t)

∂x δx holds, where
δx is an infinitesimal virtual displacement in fixed time. The
squared virtual displacement between two trajectories of (1) in a
symmetric, uniformly positive definite metric M (x, t) ∈ Rn×n is
given by δxT M (x, t)δx and its time derivative by

d
dt

(
δxT M (x, t)δx

)
= δxT

(
∂ f
∂x

T

M (x, t)+ Ṁ (x, t)

+M (x, t)
∂ f
∂x

)
δx. (2)

If the following inequality is satisfied

∂ f
∂x

T

M (x, t)+ Ṁ (x, t)+M (x, t)
∂ f
∂x
≤−2γM (x, t) ∀t, ∀x (3)

for a strictly positive constant γ, then the system (1) is said to be
contracting with the rate γ and all the system trajectories expo-
nentially converge to a single trajectory irrespective of the initial
conditions (hence, globally exponentially stable).

3 Problem Formulation and Solution Approach

3.1 Problem Formulation

Consider a state variable x ∈ Rn and let a set of N demon-
strations {Di}N

i=1 be solutions to the underlying dynamic model
governed by the following first order differential equation

ẋ(t) = f (x(t)) (4)

where f : Rn → Rn is a nonlinear continuous and continuously
differentiable function. Each demonstration would consist of the
trajectories of the state {x(t)}t=T

t=1 and the trajectories of the state
derivative {ẋ(t)}t=T

t=1 from time t = 0 to t = T . Since all the state
trajectories of the demonstrations of a specific stable dynamic
system would exponentially converge to a single trajectory or a
single point, the system defined in (4) could be seen as a globally
contracting system. The nonlinear function f is modeled using a
NN given by

f (x(t)) =W T
σ
(
UT s(t)

)
+ ε (s(t)) (5)

where s(t) =
[
x(t)T ,1

]T
∈ Rn+1 is the input vector to

the NN, σ(UT s(t)) = [ 1
1+exp(−(UT s(t))1)

, · · · 1
1+exp(−(UT s(t))i)

, · ·

· 1
1+exp(−(UT s(t))nh

)
]T is the vector-sigmoid activation function

and
(
UT s(t)

)
i is the ith element of the vector

(
UT s(t)

)
, U ∈

Rn+1×nh and W ∈ Rnh×n are the bounded constant weight matri-
ces, ε (s(t))∈Rn is the function reconstruction error that goes to
zero after the NN is fully trained, and nh is the number of hidden
layers of the NN. Given the demonstrations, this paper addresses
the problem of learning the function f , which is modeled using
a NN, under contraction conditions. This will help in generating
exponentially converging trajectories, governed by a stable dy-
namical system, starting from a given arbitrary initial condition.

The constrained optimization problem to be solved in order
to train a contracting NN can be written as

{Ŵ ,Û}= arg min
W,U
{αED +βEW} (6)

such that
∂ f
∂x

T

M+M
∂ f
∂x
≤−γM, M > 0 (7)

where ED = ∑
N
i=1 [yi−ai]

T [yi−ai] is the sum of squared error,
yi ∈Rn and ai ∈Rn represent the target and the network’s output
of the i-th demonstration, EW is the sum of the squares of the
NN weights, α and β are the parameters of regularization, γ is
a strictly positive constant, and M ∈ Rn×n represents a constant
positive symmetric matrix. Thus,

(
∂ f
∂x

)
can be calculated as

∂ f
∂x

=W T ∂σ
(
UT s

)
∂x

=W T
[
Σ
′ (

UT s
)]

UT
x (8)

where for any b ∈Rp, Σ
′
(b) ∈Rnh×nh is a diagonal matrix given

by

Σ
′
(b) = diag(σ (b1)(1−σ (b1)) ,

σ (b2)(1−σ (b2)) , · · ··,σ (bp)(1−σ (bp))) , (9)

and Ux ∈ Rn×nh is a sub-matrix of U formed by taking the first n
rows of U.

3.2 Learning Contracting NNs

The optimization problem defined in (6) and (7) can be writ-
ten as

{Ŵ ,Û}= argmin
W,U
{α

N

∑
i=1

(
[yi−ai]

T [yi−ai]
)

+β
(
tr
(
W TW

)
+ tr

(
UTU

))
} (10)

such that

Ux

[
Σ
′
(UT s)

]T
WM+MW T

[
Σ
′
(UT s)

]
UT

x ≤−γM, M > 0

(11)
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where M ∈ Rn×n is the symmetric, positive definite contraction
metric. We will show using Lemma 1 and Proposition 1 that the
non-convex constraints (11) can be relaxed to LMI constraints.

Lemma 1. The constraints defined in (11) is always satisfied if
the following constraints are satisfied

UxWM+MW TUT
x + γ1M ≤ 0, M > 0, (12)

where γ1 = 4γ .

Proof. The sigmoid function σ (·) ∈ [0,1] and hence its deriva-
tive σ (·)(1−σ (·)) has upper and lower bounds given by

0≤ σ (·)(1−σ (·))≤ 0.25. (13)

Using (13) and the fact that Σ
′
(·) is given by (9), each diagonal

element of the matrix Σ
′
(UT s) can be upper bounded by 0.25 and

the upper bound of the whole matrix is given by

Σ
′
(UT s)≤ 0.25Inh×nh . (14)

On multiplying MW T to the left and UT
x to the right of both sides

of (14), we have

MW T
[
Σ
′
(UT s)

]
UT

x ≤ 0.25
[
MW TUT

x
]

(15)

and similarly we have

Ux

[
Σ
′
(UT s)

]T
WM ≤ 0.25 [UxWM] . (16)

Using (15) and (16), Ux

[
Σ
′
(UT s)

]T
WM +MW T

[
Σ
′
(UT s)

]
UT

x

can be upper bounded as

Ux

[
Σ
′
(UT s)

]T
WM+MW T

[
Σ
′
(UT s)

]
UT

x

≤ 0.25 [UxWM]+0.25
[
MW TUT

x
]
. (17)

Now, if the constraint defined in (12) holds, (12) and (17) to-
gether yield

Ux

[
Σ
′
(UT s)

]T
WM+MW T

[
Σ
′
(UT s)

]
UT

x

≤ 0.25 [UxWM]+0.25
[
MW TUT

x
]
≤−γM, (18)

and the constraint in (11), a part of (18), is hence satisfied.

Proposition 1. The bilinear matrix inequality (BMI) defined in
(12) can be converted to the following LMI equations by Shor’s
relaxation in terms of a new variable A =UxW

AM+MAT + γ1M ≤ 0, (19)

and

sym
[

Inh×nh W
Ux A

]
≤ 0, M > 0 (20)

where sym(·) is the symmetric part of a matrix.

Proof. The first inequality in (12) can be written as AM+MAT +
γ1M ≤ 0. To handle the equality constraint A = UxW , new con-

straints on A, Ux, and W are given in (20) according to the Shor’s
relaxation [14].

Thus, the solution to the modified optimization problem is
given by

{Ŵ ,Û}= arg min
W,U
{α

N

∑
i=1

(
[yi−ai]

T [yi−ai]
)

+β
(
tr
(
W TW

)
+ tr

(
UTU

))
} (21)

such that AM+MAT + γ1M ≤ 0,

sym
[

Inh×nh W
Ux A

]
≤ 0, M > 0,

would also be a solution to the original optimization problem de-
fined in (10) and (11). Note that the cost function to be min-
imized is a non-convex function with convex inequality con-
straints.

3.3 Obstacle Avoidance
The trajectory generated by the contracting NN does not take

any obstacles into consideration. The only feedback the system
considers is the current state of the system. In order to effec-
tively generate trajectories to perform various reaching tasks, we
also explore the capability of obstacle avoidance. To this end,
we introduce an artificial repulsive potential field [15, 16] in the
workspace to the contracting dynamics learned using NN. The
repulsive potential Vr for the ith obstacle and the control point
(end effector) is given by

Vri(x) =

 1
2 η

(
1

di(x)
− 1

D∗i

)2
, di(x)≤ D∗i

0, di(x)> D∗i
(22)

The gradient of (22) w.r.t. the state x is given by

∇xVri(x) =

{
η

(
1

D∗i
− 1

di(x)

)
1

d2
i (x)

∇xdi(x), di(x)≤ D∗i
0, di(x)> D∗i

(23)

where di(x) = ||x− oi||2 is the Euclidean distance from x to the
location of the ith obstacle oi, D∗i is the size of the domain of
influence of the ith obstacle, η ∈ R > 0 is a positive constant,
and ∇xdi(x) denotes the derivative of di(x) with respect to x. The
negative gradient of (22), given by the negative of (23), gives
a repulsive force acting on the robot. The repulsive force that
drives the robot away from the obstacles can be viewed as a force
that acts along with an attractive force to drive the robot to the
goal location. In our case, the attractive force is provided by the
contracting NN. Hence, the combined dynamics is described by

ẋ = f (x(t))−∑
i

∇xVri(x), for i = {1, ..,no} (24)

where no is the number of obstacles.
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FIGURE 2. Demonstration of a human reaching for the target location.

FIGURE 3. Robot motion planning using a contracting neural network for a pick and place task executed as a series of reaching tasks. The trajectories
of the left arm (dotted yellow lines) and the trajectories of the right arm (dotted red lines) were generated independently using the same learned
contracting NN.

4 Experimental Validation

A set of five experiments were conducted to learn the human
arm’s motion dynamics using a NN and demonstrate the perfor-
mance of the proposed algorithm. All the experiments were con-
ducted using a desktop computer running Intel i3 processor and
8 Gigabytes of memory. The algorithm was coded using Mat-
lab 2014a. In all the experiments, the position of the hand in
3-dimensional (3D) Cartesian space was considered to be the
state. The velocity estimates of the hand were computed from
the position measurements using a finite difference method. The
number of hidden layers of the NN was chosen to be six. The
network weights of the constrained optimization algorithm were
initialized to the weights obtained by learning the NN without the
constraints. The metric M was chosen to be the identity matrix.
Matlab’s fmincon function was used to solve the optimization
problem. The demonstrations were collected using the Microsoft
Kinect for Windows and involved a human reaching for a target
location to pick an object (see Fig. 2). The videos of the ex-
periments conducted on the Baxter robot platform can be viewed
at htt ps : //www.youtube.com/watch?v = z0WCW c5AMk. The
objective of each experiment can be summarized as follows.

1. Experiment 1 was conducted to show that the learned model
generates contracting trajectories from arbitrary initial con-
ditions (See Fig. 4).

2. Experiment 2 was conducted to study the benefits of impos-
ing the contraction conditions in the learning of the dynamic
system as opposed to unconstrained learning (See Fig. 5).

3. Experiment 3 was conducted to study the behavior of the
learned model under perturbations such as a sudden unin-
tended change in the states (See Fig. 6).

4. Experiment 4 was conducted on the Baxter robot platform.
The learned model was used to generate trajectories for both
the arms of the robot in order to perform a pick and place
task (See Fig. 3).

5. Experiment 5 was conducted to study the obstacle avoidance
properties of the proposed algorithm (See Figs. 7 and 8).

The first set of experiment involved learning the parameters
of the NN with contraction constraints. The set of four demon-
strations were used to learn the dynamics. In Fig. 4, it can be
seen that the learned NN indeed generates contracting trajecto-
ries that start from arbitrary initial conditions and end at the tar-
get.
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FIGURE 4. The learned NN generating contracting trajectories to the
target starting from arbitrary initial points.
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FIGURE 5. Comparison of models learned with (solid blue lines)
and without (dashed black lines) contraction constraints using a single
demonstration.

To demonstrate the effectiveness of the proposed algorithm,
the second set of experiments involved the learning of the dy-
namics both with and without the enforcement of the constraints
using a single demonstration (see Fig.5). The model learned
without constraints generated trajectories that do not end at the
target unless the initial point of the model was chosen to be the
initial point of the demonstration. On the other hand, we can
see that the model learned with the contraction constraints gen-
erated contracting trajectories to the target from arbitrary initial
conditions. The initial conditions were chosen using Matlab’s
random number generator. It should be noted that the model
learned with four demonstrations generated trajectories that were
more “human-like” compared to the model learned with a single
demonstration.

The third set of experiments were conducted to study the be-
havior of the learned model under perturbations. It is important
to study the robustness of the learned model under possible per-
turbations such as a sudden spike in the sensor measurements.
To simulate this issue, we introduced perturbations (translations)
in the trajectories that were being generated by the model at the
50th iteration (see Fig. 6). The magnitude of the perturbations
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FIGURE 6. Robustness analysis of the proposed learning algorithm.
Perturbations (translations) were introduced while the trajectories were
being generated by the model.

were randomly sampled from a uniform distribution between 0
meters and 1 meters. It can be seen that even after the trajecto-
ries are perturbed, the model drives the trajectories to the target.

The fourth experiment involved motion planning for the
Baxter robot in order to perform a pick and place task. The task
was to pick an object from the table using one of the arms, place
it in a location, have the other arm pick it up, and place it in the
target location. The learned model was used to generate the tra-
jectories that the arms were made to follow. The standard low
level controller of Baxter was used to move the arms through the
generated way points (see Fig. 3). The same learned model from
experiment 1 was used and no separate demonstrations were re-
quired for generating the trajectories of both the arms of Baxter.
The task was executed as a sequence of sub-tasks and the learned
NN was used to generate the trajectories for each sub-task. This
experiment was repeated five times with the arms starting from
different initial conditions. The contracting NN was able to suc-
cessfully generate the required trajectories on all five occasions.

The fifth experiment involved testing the obstacle avoidance
ability of the proposed algorithm. The same learned NN from
earlier experiments were used and (24) was used to generate the
trajectories. The region of influence D∗i of each obstacle was
chosen to be 0.1 meters and the constant η was chosen to be
0.01. The trajectories generated from arbitrary initial points are
shown in Fig. 8. The obstacle avoidance algorithm was also im-
plemented on the Baxter platform for a pick and place task. The
task involved picking up an object from a location and placing
it in a given location while avoiding a box shaped obstacle. The
results are shown as a sequence of images in Fig. 7.

5 Conclusion
The paper illustrates a method to learn contracting nonlin-

ear dynamic systems represented using a NN. Arm motion tra-
jectories generated by humans are contracting and reach a tar-
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FIGURE 7. A pick and place task performed as a series of reaching operations on the Baxter robot involving obstacle avoidance. Trajectories (dotted
yellow lines) were generated using the learned contracting model with real-time obstacle avoidance.
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FIGURE 8. Trajectories generated by the contracting NN both with
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get location. Thus in order to validate the proposed algorithm,
human arm motion dynamics were learned from demonstrations
recorded using Microsoft Kinect. A constrained optimization
problem was formulated to facilitate the learning of contracting
dynamics. The non-convex constraints that result from contrac-
tion analysis were relaxed to obtain LMI constraints. A set of
five experiments were conducted to demonstrate the contract-
ing behavior of the system starting at arbitrary initial conditions.
Experiments 1 and 2 showed that contracting models could be
learned from a single demonstration and are robust to perturba-
tions in the trajectory. Experiment 3 showed that the contracting
NN is robust to perturbations in the trajectory. Experiment 4
showed that the learned model can be used to generate trajecto-
ries for robot arm motion. Finally, Experiment 5 illustrated the
ability of the CDSP to handle obstacles placed on the preplanned
trajectories
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